55 research outputs found

    Individual epigenetic status of the pathogenic D4Z4 macrosatellite correlates with disease in facioscapulohumeral muscular dystrophy

    Get PDF
    BACKGROUND: Both forms of facioscapulohumeral muscular dystrophy (FSHD) are associated with aberrant epigenetic regulation of the chromosome 4q35 D4Z4 macrosatellite. Chromatin changes due to large deletions of heterochromatin (FSHD1) or mutations in chromatin regulatory proteins (FSHD2) lead to relaxation of epigenetic repression and increased expression of the deleterious double homeobox 4 (DUX4) gene encoded within the distal D4Z4 repeat. However, many individuals with the genetic requirements for FSHD remain asymptomatic throughout their lives. Here we investigated family cohorts of FSHD1 individuals who were either affected (manifesting) or without any discernible weakness (nonmanifesting/asymptomatic) and their unaffected family members to determine if individual epigenetic status and stability of repression at the contracted 4q35 D4Z4 array in myocytes correlates with FSHD disease. RESULTS: Family cohorts were analyzed for DNA methylation on the distal pathogenic 4q35 D4Z4 repeat on permissive A-type subtelomeres. We found DNA hypomethylation in FSHD1-affected subjects, hypermethylation in healthy controls, and distinctly intermediate levels of methylation in nonmanifesting subjects. We next tested if these differences in DNA methylation had functional relevance by assaying DUX4-fl expression and the stability of epigenetic repression of DUX4-fl in myogenic cells. Treatment with drugs that alter epigenetic status revealed that healthy cells were refractory to treatment, maintaining stable repression of DUX4, while FSHD1-affected cells were highly responsive to treatment and thus epigenetically poised to express DUX4. Myocytes from nonmanifesting subjects had significantly higher levels of DNA methylation and were more resistant to DUX4 activation in response to epigenetic drug treatment than cells from FSHD1-affected first-degree relatives containing the same contraction, indicating that the epigenetic status of the contracted D4Z4 array is reflective of disease. CONCLUSIONS: The epigenetic status of the distal 4qA D4Z4 repeat correlates with FSHD disease; FSHD-affected subjects have hypomethylation, healthy unaffected subjects have hypermethylation, and nonmanifesting subjects have characteristically intermediate methylation. Thus, analysis of DNA methylation at the distal D4Z4 repeat could be used as a diagnostic indicator of developing clinical FSHD. In addition, the stability of epigenetic repression upstream of DUX4 expression is a key regulator of disease and a viable therapeutic target

    Analysis of Myogenic and Candidate Disease Biomarkers in FSHD Muscle Cells

    Get PDF
    The UMMS Wellstone Program is a foundation and NIH-funded cooperative research center focusing on identifying biomarkers for facioscapulohumeral muscular dystrophy (FSHD) to gain insight into the molecular pathology of the disease and to develop potential therapies. FSHD is characterized by progressive wasting of skeletal muscles, with weakness often initiating in facial muscles and muscles supporting the scapula and upper arms. While the genetics associated with FSHD are complex, the major form of the disease, FSHD1, is linked to contraction of the D4Z4 repeat region located at chromosome 4q. Recently, a transcript encoded at the distal end of the repeat region, Dux4-fl, normally expressed in embryonic stem cells and germ cells, was also detected in differentiated muscle cells and biopsies from FSHD subjects, giving rise to the hypothesis that DUX4-FL function contributes to muscle weakness. We established a repository of high quality, well-characterized primary and immortalized muscle cell strains from FSHD and control subjects in affected families to provide biomaterials for cell and molecular studies to the FSHD research community. qPCR and immunostaining analyses demonstrate similar growth and differentiation characteristics in cells from FSHD and control subjects within families. We detected Dux4-fl transcript and protein in FSHD cells as recently described; interestingly, we also detected Dux4-fl in muscle cells from a subset of control individuals, suggesting that any Dux4-fl-mediated myopathy would require additional modifying elements. Microarray analysis of FSHD and control muscle cells demonstrated that several genes were upregulated in FSHD cells, including genes that were concurrently identified as downstream targets of Dux4-fl and as candidate FSHD disease genes. Future studies will further characterize the RNA and protein expression of candidate disease genes in cells from FSHD and control subjects, including nonmanifesting subjects with the D4Z4 lesion but no muscle weakness, and utilizing whole transcriptome sequencing (RNAseq) to identify additional candidates

    Probing the function of neuronal populations : combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Neuroscience Research 75 (2013): 76-81, doi:10.1016/j.neures.2012.11.006.Recent advances in our understanding of brain function have come from using light to either control or image neuronal activity. Here we describe an approach that combines both techniques: a micromirror array is used to photostimulate populations of presynaptic neurons expressing channelrhodopsin-2, while a red-shifted voltage-sensitive dye allows optical detection of resulting postsynaptic activity. Such technology allowed us to control the activity of cerebellar interneurons while simultaneously recording inhibitory responses in multiple Purkinje neurons, their postsynaptic targets. This approach should substantially accelerate our understanding of information processing by populations of neurons within brain circuits.This work was supported by a Grass Foundation fellowship, National Institutes of Health (NIH grant: R01 EB001963), Duke‐NUS Signature Research Program (SRP) block grant, CRP grant from the National Research Foundation (Singapore) and by the World Class Institute (WCI) Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea (MEST) (NRF Grant Number: WCI 2009-003)

    初年次基礎教育科目における予習課題および復習、Google Classroom を使用した小テストの学生の実施状況および学生からの評価

    Get PDF
     初年次基礎教育科目「疾病治療概論」における予習課題、復習、Google Classroom を使用した小テストに対する評価を明らかにすることを目的として、A 大学の1 年生を対象にアンケート調査を行った。72 名より回答があり(回収率97.3%)、予習課題は授業内容の理解に役立ったかの質問には、“そう思う”が40.3%、“ややそう思う”が52.8%であった。復習は授業内容の理解に役立ったかの質問には、“そう思う”が61.4%、“ややそう思う”が38.6%であった。小テストは授業内容の理解に役立ったかの質問には、“そう思う”が56.3%、“ややそう思う”42.3%であり、今後の授業でもGoogle Classroom を使った小テストを希望する学生は65.3%であった。 web 経由でスマートフォンから手軽に解答できるツールは、授業内容の理解を高めることに有効であり、新型コロナウイルス感染症が流行している状況においても学習の継続に貢献できる可能性が示された

    Oxidation of Mild Steel in Carbon Dioxide : An Effect of Sulfides・2nd Report

    No full text

    Oxidation of Mild Steel in Carbon Dioxide : An Effect of Sulfides ・ 1st Report

    No full text

    Strain Measurement by High Temperature Back Reflection X-Ray Diffraction : A Controlling Atmosphere Furnace

    Get PDF

    A Stochastic Process in the Oxidation of Mild Steel in Carbon Dioxide

    No full text

    Functional domains of the FSHD-associated DUX4 protein

    No full text
    Aberrant expression of the full-length isoform of DUX4 (DUX4-FL) appears to underlie pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). DUX4-FL is a transcription factor and ectopic expression of DUX4-FL is toxic to most cells. Previous studies showed that DUX4-FL-induced pathology requires intact homeodomains and that transcriptional activation required the C-terminal region. In this study, we further examined the functional domains of DUX4 by generating mutant, deletion, and fusion variants of DUX4. We compared each construct to DUX4-FL for (i) activation of a DUX4 promoter reporter, (ii) expression of the DUX4-FL target gene ZSCAN4, (iii) effect on cell viability, (iv) activation of endogenous caspases, and (v) level of protein ubiquitination. Each construct produced a similarly sized effect (or lack of effect) in each assay. Thus, the ability to activate transcription determined the extent of change in multiple molecular and cellular properties that may be relevant to FSHD pathology. Transcriptional activity was mediated by the C-terminal 80 amino acids of DUX4-FL, with most activity located in the C-terminal 20 amino acids. We also found that non-toxic constructs with both homeodomains intact could act as inhibitors of DUX4-FL transcriptional activation, likely due to competition for promoter sites. This article has an associated First Person interview with the first author of the paper
    corecore