6,936 research outputs found
Improving information/disturbance and estimation/distortion trade-offs with non universal protocols
We analyze in details a conditional measurement scheme based on linear
optical components, feed-forward loop and homodyne detection. The scheme may be
used to achieve two different tasks. On the one hand it allows the extraction
of information with minimum disturbance about a set of coherent states. On the
other hand, it represents a nondemolitive measurement scheme for the
annihilation operator, i.e. an indirect measurement of the Q-function. We
investigate the information/disturbance trade-off for state inference and
introduce the estimation/distortion trade-off to assess estimation of the
Q-function. For coherent states chosen from a Gaussian set we evaluate both
information/disturbance and estimation/distortion trade-offs and found that non
universal protocols may be optimized in order to achieve better performances
than universal ones. For Fock number states we prove that universal protocols
do not exist and evaluate the estimation/distortion trade-off for a thermal
distribution.Comment: 10 pages, 6 figures; published versio
A genetic algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile communication systems
In this work, a novel Minimum-Mean Squared-Error (MMSE) multi-user detector is proposed for MC-CDMA transmission systems working over mobile radio channels characterized by time-varying multipath fading. The proposed MUD algorithm is based on a Genetic Algorithm (GA)-assisted per-carrier MMSE criterion. The GA block works in two successive steps: a training-aided step aimed at computing the optimal receiver weights using a very short training sequence, and a decision-directed step aimed at dynamically updating the weights vector during a channel coherence period. Numerical results evidenced BER performances almost coincident with ones yielded by ideal MMSE-MUD based on the perfect knowledge of channel impulse response. The proposed GA-assisted MMSE-MUD clearly outperforms state-of-the-art adaptive MMSE receivers based on deterministic gradient algorithms, especially for high number of transmitting users
A minimum-disturbing quantum state discriminator
We propose two experimental schemes for quantum state discrimination that
achieve the optimal tradeoff between the probability of correct identification
and the disturbance on the quantum state.Comment: 9 pages, 1 figure, OSID style. Submitted to the special issue of
"Open Systems and Information Dynamics", Proceedings of the "38th Symposium
on Mathematical Physics", Torun, Poland, June 200
AGN counts at 15um. XMM observations of the ELAIS-S1-5 sample
Context: The counts of galaxies and AGN in the mid infra-red (MIR) bands are
important instruments for studying their cosmological evolution. However, the
classic spectral line ratios techniques can become misleading when trying to
properly separate AGN from starbursts or even from apparently normal galaxies.
Aims: We use X-ray band observations to discriminate AGN activity in
previously classified MIR-selected starburst galaxies and to derive updated
AGN1 and (Compton thin) AGN2 counts at 15 um.
Methods: XMM observations of the ELAIS-S1 15um sample down to flux limits
~2x10^-15 erg cm^-2 s^-1 (2-10 keV band) were used. We classified as AGN all
those MIR sources with a unabsorbed 2-10 keV X-ray luminosity higher that
~10^42 erg/s.
Results: We find that at least about 13(+/-6) per cent of the previously
classified starburst galaxies harbor an AGN. According to these figures, we
provide an updated estimate of the counts of AGN1 and (Compton thin) AGN2 at 15
um. It turns out that at least 24% of the extragalactic sources brighter than
0.6 my at 15 um are AGN (~13% contribution to the extragalactic background
produced at fluxes brighter than 0.6 mJy).Comment: Accepted for publication on A&
Characterization of tomographically faithful states in terms of their Wigner function
A bipartite quantum state is tomographically faithful when it can be used as
an input of a quantum operation acting on one of the two quantum systems, such
that the joint output state carries a complete information about the operation
itself. Tomographically faithful states are a necessary ingredient for
tomography of quantum operations and for complete quantum calibration of
measuring apparatuses. In this paper we provide a complete classification of
such states for continuous variables in terms of the Wigner function of the
state. For two-mode Gaussian states faithfulness simply resorts to correlation
between the modes.Comment: 9 pages. IOPAMS style. Some improvement
Phase-covariant cloning of coherent states
We consider the problem of phase-covariant cloning for coherent states. We
show that an experimental scheme based on ideal phase measurement and
feedforward outperforms the semiclassical procedure of ideal phase measurement
and preparation in terms of fidelity. A realistic scheme where the ideal phase
measurement is replaced with double-homodyne detection is shown to be unable to
overcome the semiclassical cloning strategy. On the other hand, such a
realistic scheme is better than semiclassical cloning based on double-homodyne
phase measurement and preparation.Comment: 6 pages, 2 figures; updated references and minor corrections; in
press on Physical Review
Information-disturbance tradeoff in estimating a maximally entangled state
We derive the amount of information retrieved by a quantum measurement in
estimating an unknown maximally entangled state, along with the pertaining
disturbance on the state itself. The optimal tradeoff between information and
disturbance is obtained, and a corresponding optimal measurement is provided.Comment: 4 pages. Accepted for publication on Physical Review Letter
Generating qudits with d=3,4 encoded on two-photon states
We present an experimental method to engineer arbitrary pure states of qudits
with d=3,4 using linear optics and a single nonlinear crystal.Comment: 4 pages, 1 eps figure. Minor changes. The title has been changed for
publication on Physical Review
Physical realizations of quantum operations
Quantum operations (QO) describe any state change allowed in quantum
mechanics, such as the evolution of an open system or the state change due to a
measurement. We address the problem of which unitary transformations and which
observables can be used to achieve a QO with generally different input and
output Hilbert spaces. We classify all unitary extensions of a QO, and give
explicit realizations in terms of free-evolution direct-sum dilations and
interacting tensor-product dilations. In terms of Hilbert space dimensionality
the free-evolution dilations minimize the physical resources needed to realize
the QO, and for this case we provide bounds for the dimension of the ancilla
space versus the rank of the QO. The interacting dilations, on the other hand,
correspond to the customary ancilla-system interaction realization, and for
these we derive a majorization relation which selects the allowed unitary
interactions between system and ancilla.Comment: 8 pages, no figures. Accepted for publication on Phys. Rev.
- …