49 research outputs found

    How the Selection of Training Data and Modeling Approach Affects the Estimation of Ammonia Emissions from a Naturally Ventilated Dairy Barn-Classical Statistics versus Machine Learning

    Get PDF
    Environmental protection efforts can only be effective in the long term with a reliable quantification of pollutant gas emissions as a first step to mitigation. Measurement and analysis strategies must permit the accurate extrapolation of emission values. We systematically analyzed the added value of applying modern machine learning methods in the process of monitoring emissions from naturally ventilated livestock buildings to the atmosphere. We considered almost 40 weeks of hourly emission values from a naturally ventilated dairy cattle barn in Northern Germany. We compared model predictions using 27 different scenarios of temporal sampling, multiple measures of model accuracy, and eight different regression approaches. The error of the predicted emission values with the tested measurement protocols was, on average, well below 20%. The sensitivity of the prediction to the selected training dataset was worse for the ordinary multilinear regression. Gradient boosting and random forests provided the most accurate and robust emission value predictions, accompanied by the second-smallest model errors. Most of the highly ranked scenarios involved six measurement periods, while the scenario with the best overall performance was: One measurement period in summer and three in the transition periods, each lasting for 14 days

    Concentration Gradients of Ammonia, Methane, and Carbon Dioxide at the Outlet of a Naturally Ventilated Dairy Building

    Get PDF
    In natural ventilation system-enabled dairy buildings (NVDB), achieving accurate gas emission values is highly complicated. The external weather affects measurements of the gas concentration of pollutants () and volume flow rate (Q) due to the open-sided design. Previous research shows that increasing the number of sensors at the side opening is not cost-effective. However, accurate measurements can be achieved with fewer sensors if an optimal sampling position is identified. Therefore, this study attempted to calibrate the outlet of an NVDB for the direct emission measurement method. Our objective was to investigate the gradients, in particular, for ammonia (3), carbon dioxide (2), and methane (4) considering the wind speed (v) and their mixing ratios ([cCH4/cNH3]) at the outlet, and assess the effect of sampling height (H). The deviations in each at six vertical sampling points were recorded using a Fourier-transform infrared (FTIR) spectrometer. Additionally, wind direction and speed were recorded at the gable height (10 m) by an ultrasonic anemometer. The results indicated that, at varied heights, the average 3 (p < 0.001), 2 (p < 0.001), and (p < 0.001) were significantly different and mostly concentrated at the top (H = 2.7). Wind flow speed information revealed drastic deviations in , for example up to +105.1% higher 3 at the top (H = 2.7) compared to the baseline (H = 0.6), especially during low wind speed (v < 3 m s−1) events. Furthermore, [cCH4/cNH3] exhibited significant variation with height, demonstrating instability below 1.5 m, which aligns with the average height of a cow. In conclusion, the average 2, 4, and 3 measured at the barn’s outlet are spatially dispersed vertically which indicates a possibility of systematic error due to the sensor positioning effect. The outcomes of this study will be advantageous to locate a representative gas sampling position when measurements are limited to one constant height, for example using open-path lasers or low-cost devices

    Opening Size Effects on Airflow Pattern and Airflow Rate of a Naturally Ventilated Dairy Building-A CFD Study

    Get PDF
    Airflow inside naturally ventilated dairy (NVD) buildings is highly variable and difficult to understand due to the lack of precious measuring techniques with the existing methods. Computational fluid dynamics (CFD) was applied to investigate the effect of different seasonal opening combinations of an NVD building on airflow patterns and airflow rate inside the NVD building as an alternative to full scale and scale model experiments. ANSYS 2019R2 was used for creating model geometry, meshing, and simulation. Eight ventilation opening combinations and 10 different reference air velocities were used for the series of simulation. The data measured in a large boundary layer wind tunnel using a 1:100 scale model of the NVD building was used for CFD model validation. The results show that CFD using standardk-epsilon turbulence model was capable of simulating airflow in and outside of the NVD building. Airflow patterns were different for different opening scenarios at the same external wind speed, which may affect cow comfort and gaseous emissions. Guiding inlet air by controlling openings may ensure animal comfort and minimize emissions. Non-isothermal and transient simulations of NVD buildings should be carried out for better understanding of airflow patterns

    CFD modelling of an animal occupied zone using an anisotropic porous medium model with velocity depended resistance parameters

    Get PDF
    The airflow in dairy barns is affected by many factors, such as the barn's geometry, weather conditions, configurations of the openings, cows acting as heat sources, flow obstacles, etc. Computational fluids dynamics (CFD) has the advantages of providing detailed airflow information and allowing fully-controlled boundary conditions, and therefore is widely used in livestock building research. However, due to the limited computing power, numerous animals are difficult to be designed in detail. Consequently, there is the need to develop and use smart numerical models in order to reduce the computing power needed while at the same time keeping a comparable level of accuracy. In this work the porous medium modeling is considered to solve this problem using Ansys Fluent. A comparison between an animal occupied zone (AOZ) filled with randomly arranged 22 simplified cows' geometry model (CM) and the porous medium model (PMM) of it, was made. Anisotropic behavior of the PMM was implemented in the porous modeling to account for turbulence influences. The velocity at the inlet of the domain has been varied from 0.1 m s(-1) to 3 in s(-1) and the temperature difference between the animals and the incoming air was set at 20 K. Leading to Richardson numbers Ri corresponding to the three types of heat transfer convection, i.e. natural, mixed and forced convection. It has been found that the difference between two models (the cow geometry model and the PMM) was around 2% for the pressure drop and less than 6% for the convective heat transfer. Further the usefulness of parametrized PMM with a velocity adaptive pressure drop and heat transfer coefficient is shown by velocity field validation of an on-farm measurement

    Non-linear temperature dependency of ammonia and methane emissions from a naturally ventilated dairy barn

    Get PDF
    Ammonia (NH3) and methane (CH4) emissions from naturally ventilated dairy barns affect the environment and the wellbeing of humans and animals. Our study improves the understanding of the dependency of emission rates on climatic conditions with a particular focus on temperature. Previous investigations of the relation between gas emission and temperature mainly rely on linear regression or correlation analysis. We take up a preceding study presenting a multilinear regressionmodel based onNH3 and CH4 concentration and temperaturemeasurements between 2010 and 2012 in a dairy barn for 360 cows inNorthern Germany.We study scatter plots and non-linear regressionmodels for a subset of these data and show that the linear approximation comes to its limits when large temperature ranges are considered. The functional dependency of the emission rates on temperature differs among the gases. For NH3, the exponential dependency assumed in previous studies was proven. For methane, a parabolic relation was found. The emissions show large daily and annual variations and environmental impact factors like wind and humidity superimpose the temperature dependency but the functional shape in general persists. Complementary to the former insight that high temperature increases emissions, we found that in the case of CH4, also temperatures below 10 C lead to an increase in emissions from ruminal fermentation which is likely to be due to a change in animal activity. The improved prediction of emissions by the novel non-linear model may support more accurate economic and ecological assessments of smart barn concepts
    corecore