10 research outputs found

    Nitric Oxide Resistance in Leishmania (Viannia) braziliensis Involves Regulation of Glucose Consumption, Glutathione Metabolism and Abundance of Pentose Phosphate Pathway Enzymes

    Get PDF
    In American Tegumentary Leishmaniasis production of cytokines, reactive oxygen species and nitric oxide (NO) by host macrophages normally lead to parasite death. However, some Leishmania braziliensis strains exhibit natural NO resistance. NO-resistant strains cause more lesions and are frequently more resistant to antimonial treatment than NO-susceptible ones, suggesting that NO-resistant parasites are endowed with specific mechanisms of survival and persistence. To tests this, we analyzed the effect of pro- and antioxidant molecules on the infectivity in vitro of L. braziliensis strains exhibiting polar phenotypes of resistance or susceptibility to NO. In addition, we conducted a comprehensive quantitative mass spectrometry-based proteomics analysis of those parasites. NO-resistant parasites were more infective to peritoneal macrophages, even in the presence of high levels of reactive species. Principal component analysis of protein concentration values clearly differentiated NO-resistant from NO-susceptible parasites, suggesting that there are natural intrinsic differences at molecular level among those strains. Upon NO exposure, NO-resistant parasites rapidly modulated their proteome, increasing their total protein content and glutathione (GSH) metabolism. Furthermore, NO-resistant parasites showed increased glucose analogue uptake, and increased abundance of phosphotransferase and G6PDH after nitrosative challenge, which can contribute to NADPH pool maintenance and fuel the reducing conditions for the recovery of GSH upon NO exposure. Thus, increased glucose consumption and GSH-mediated redox capability may explain the natural resistance of L. braziliensis against NO

    In-depth quantitative proteomics uncovers specie-specific metabolic programs in Leishmania (Viannia) species

    No full text
    Author summary Leishmania braziliensis,L.panamensis, andL.guyanensisare responsible for most of the cases of tegumentary leishmaniasis (TL) in the Americas. These species are associated with a variety of clinical manifestations of TL ranging from self-healing localized cutaneous lesions to disseminated and mucocutaneous presentations that may result in severe oropharyngeal mutilation. Here, we report a comprehensive quantitative comparison of the proteome of those species. Assessment of absolute titers of similar to 7000 proteins revealed a very clear differentiation among them. Significant differences in energy metabolism, membrane proteins, transporters, and lipids are contributing for species-specific traits and provide rich substrate for exploring new molecules for diagnosing purposes. Leishmaniaspecies are responsible for a broad spectrum of diseases, denominated Leishmaniasis, affecting over 12 million people worldwide. During the last decade, there have been impressive efforts for sequencing the genome of most of the pathogenicLeishmaniaspp. as well as hundreds of strains, but large-scale proteomics analyses did not follow these achievements and theLeishmaniaproteome remained mostly uncharacterized. Here, we report a comprehensive comparative study of the proteomes of strains representingL.braziliensis,L.panamensisandL.guyanensisspecies. Proteins extracted by SDS-mediated lysis were processed following the multi-enzyme digestion-filter aided sample preparation (FASP) procedure and analysed by high accuracy mass spectrometry. "Total Protein Approach" and "Proteomic Ruler" were applied for absolute quantification of proteins. Principal component analysis demonstrated very high reproducibility among biological replicates and a very clear differentiation of the three species. Our dataset comprises near 7000 proteins, representing the most completeLeishmaniaproteome yet known, and provides a comprehensive quantitative picture of the proteomes of the three species in terms of protein concentration and copy numbers. Analysis of the abundance of proteins from the major energy metabolic processes allow us to highlight remarkably differences among the species and suggest that these parasites depend on distinct energy substrates to obtain ATP. WhereasL.braziliensisrelies the more on glycolysis,L.panamensisandL.guyanensisseem to depend mainly on mitochondrial respiration. These results were confirmed by biochemical assays showing opposite profiles for glucose uptake and O(2)consumption in these species. In addition, we provide quantitative data about different membrane proteins, transporters, and lipids, all of which contribute for significant species-specific differences and provide rich substrate for explore new molecules for diagnosing purposes. Data are available via ProteomeXchange with identifier PXD017696

    Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity : a review

    Get PDF
    Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control

    Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review

    Full text link

    In-Depth Quantitative Proteomics Characterization of In Vitro Selected Miltefosine Resistance in Leishmania infantum

    No full text
    Visceral leishmaniasis (VL) is a neglected disease caused by Leishmania parasites. Although significant morbidity and mortality in tropical and subtropical regions of the world are associated with VL, the low investment for developing new treatment measures is chronic. Moreover, resistance and treatment failure are increasing for the main medications, but the emergence of resistance phenotypes is poorly understood at the protein level. Here, we analyzed the development of resistance to miltefosine upon experimental selection in a L. infantum strain. Time to miltefosine resistance emergence was similar to six months and label-free quantitative mass-spectrometry-based proteomics analyses revealed that this process involves a remodeling of components of the membrane and mitochondrion, with significant increase in oxidative phosphorylation complexes, particularly on complex IV and ATP synthase, accompanied by increased energy metabolism mainly dependent on beta-oxidation of fatty acids. Proteins canonically involved in ROS detoxification did not contribute to the resistant process whereas sterol biosynthesis enzymes could have a role in this development. Furthermore, changes in the abundance of proteins known to be involved in miltefosine resistance such as ABC transporters and phospholipid transport ATPase were detected. Together, our data show a more complete picture of the elements that make up the miltefosine resistance phenotype in L. infantum

    SARS-CoV-2 reinfection cases in a household-based prospective cohort in Rio de Janeiro.

    No full text
    This was a household-based prospective cohort study conducted in Rio de Janeiro, in which people with laboratory-confirmed Covid-19 and their household contacts were followed from April 2020 through June 2022. Ninety-eight reinfections were identified, with 71 (72.5%) confirmed by genomic analyses and lineage definition in both infections. During the pre-Omicron period, one dose of any Covid-19 vaccine was associated with a reduced risk of reinfection, but during the Omicron period not even booster vaccines had this effect. Most reinfections were asymptomatic or milder in comparison with primary infections, a justification for continuing active surveillance to detect infections in vaccinated individuals. Our findings demonstrated that vaccination may not prevent infection or reinfection with SARS CoV-2, then we highlight the need to continuously update the antigenic target of SARS CoV-2 vaccines and administer booster doses to the population regularly, a strategy well established in the development of vaccines for influenza immunization programs
    corecore