23 research outputs found

    Site-specific mutadenesis in Enterobacter agglomerans: construction of nifB mutants and analysis of the gene's structure and function

    No full text
    A novel technique was developed which may be generally well suited to the site-specific construction of mutations in Enterobacter agglomerans. The method is based on the observation that E. agglomerans can be cured of a plasmid of the incompatibility group IncQ by cultivation on citrate-containing medium. To test the applicability of this technique, we inserted a kanamycin cassette into the cloned nifB gene, transferred it into E. agglomerans and selected for recombinants in which the wild-type nifB was replaced by the mutated gene by growing transformants on citrate medium with kanamycin. The nifB− mutants with the kanamycin cassette inserted in either orientation showed sequence of nifb. A typical &#963;<sup>54</sup>-dependent promoter and a consensus NifA binding site were found upstream of nifB. Activation of this promoter by both heterologous and homologous NifA proteins was observed in vivo. The predicted amino acid sequence of the NifB protein showed strong similarity to the NifB sequences of other diazotrophic bacteria. The typical clustering of cysteine residues at the N-terminal end indicates its involvement in Fe-Mo cofactor biosynthesis

    Association of a functional variant of the nitric oxide synthase 1 gene with personality, anxiety, and depressiveness

    No full text
    A functional promoter polymorphism of the nitric oxide synthase 1 gene first exon 1f variable number tandem repeat (NOS1 ex1f-VNTR) is associated with impulsivity and related psychopathology. Facets of impulsivity are strongly associated with personality traits; maladaptive impulsivity with neuroticism; and adaptive impulsivity with extraversion. Both high neuroticism and low extraversion predict anxiety and depressive symptoms. The aim of the present study was to evaluate the effect of the NOS1 ex1f-VNTR genotype and possible interaction with environmental factors on personality, anxiety, and depressiveness in a population-representative sample. Short allele carriers had higher neuroticism and anxiety than individuals with the long/long (l/l) genotype. Male short/short homozygotes also had higher extraversion. In the face of environmental adversity, females with a short allele had higher scores of neuroticism, anxiety, and depressiveness compared to the l/l genotype. Males were more sensitive to environmental conditions when they had the l/l genotype and low extraversion. In conclusion, the NOS1 ex1f-VNTR influences personality and emotional regulation dependent on gender and environment. Together with previous findings on the effect of the NOS1 genotype on impulse control, these data suggest that NOS1 should be considered another plasticity gene, because its variants are associated with different coping strategies

    PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser<sup>114 </sup>phosphorylation

    Get PDF
    Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing’s syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser114^{114} phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing’s syndrome

    Lack of Ubiquitin Specific Protease 8 (USP8) Mutations in Canine Corticotroph Pituitary Adenomas

    Get PDF
    Purpose Cushing’s disease (CD), also known as pituitary-dependent hyperadrenocorticism, is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary tumours. Affected humans and dogs have similar clinical manifestations, however, the incidence of the canine disease is thousand-fold higher. This makes the dog an obvious model for studying the pathogenesis of pituitary-dependent hyperadrenocorticism. Despite certain similarities identified at the molecular level, the question still remains whether the two species have a shared oncogenetic background. Recently, hotspot recurrent mutations in the gene encoding for ubiquitin specific protease 8 (USP8) have been identified as the main driver behind the formation of ACTH-secreting pituitary adenomas in humans. In this study, we aimed to verify whether USP8 mutations also play a role in the development of such tumours in dogs. Methods Presence of USP8 mutations was analysed by Sanger and PCR-cloning sequencing in 38 canine ACTH-secreting adenomas. Furthermore, the role of USP8 and EGFR protein expression was assessed by immunohistochemistry in a subset of 25 adenomas. Results None of the analysed canine ACTH-secreting adenomas presented mutations in the USP8 gene. In a subset of these adenomas, however, we observed an increased nuclear expression of USP8, a phenotype characteristic for the USP8 mutated human tumours, that correlated with smaller tumour size but elevated ACTH production in those tumours. Conclusions Canine ACTH-secreting pituitary adenomas lack mutations in the USP8 gene suggesting a different genetic background of pituitary tumourigenesis in dogs. However, elevated nuclear USP8 protein expression in a subset of tumours was associated with a similar phenotype as in their human counterparts, indicating a possible end-point convergence of the different genetic backgrounds in the two species. In order to establish the dog as a useful animal model for the study of CD, further comprehensive studies are needed

    Neural correlates of NOS1 ex1f-VNTR allelic variation in panic disorder and agoraphobia during fear conditioning and extinction in fMRI

    No full text
    Neuronal nitric oxide synthase (NOS-I) impacts on fear/anxiety-like behavior in animals. In humans, the short (S) allele of a functional promotor polymorphism of NOS1 (NOS1 ex1f-VNTR) has been shown to be associated with higher anxiety and altered fear conditioning in healthy subjects in the amygdala and hippocampus (AMY/HIPP). Here, we explore the role of NOS1 ex1f-VNTR as a pathophysiological correlate of panic disorder and agoraphobia (PD/AG). In a sub-sample of a multicenter cognitive behavioral therapy (CBT) randomized controlled trial in patients with PD/AG (n = 48: S/S-genotype n=15, S/L-genotype n=21, L/L-genotype n=12) and healthy control subjects, HS (n = 34: S/S-genotype n=7, S/L-genotype n=17, L/L-genotype=10), a differential fear conditioning and extinction fMRI-paradigm was used to investigate how NOS1 ex1f-VNTR genotypes are associated with differential neural activation in AMY/HIPP. Prior to CBT, L/L-allele carriers showed higher activation than S/S-allele carriers in AMY/HIPP. A genotype × diagnosis interaction revealed that the S-allele in HS was associated with a pronounced deactivation in AMY/HIPP, while patients showed contrary effects. The interaction of genotype × stimulus type (CS+, conditioned stimulus associated with an aversive stimulus vs. CS-, unassociated) showed effects on differential learning in AMY/HIPP. All effects were predominately found during extinction. Genotype associated effects in patients were not altered after CBT. Low statistical power due to small sample size in each subgroup is a major limitation. However, our findings provide first preliminary evidence for dysfunctional neural fear conditioning/extinction associated with NOS1 ex1f-VNTR genotype in the context of PD/AG, shedding new light on the complex interaction between genetic risk, current psychopathology and treatment-related effects

    The HDM2 (MDM2) Inhibitor NVP-CGM097 inhibits tumor cell proliferation and shows additive effects with 5-fluorouracil on the p53 - p21 - Rb - E2F1 cascade in the p53wildtype neuroendocrine tumor cell line GOT1

    No full text
    Background/aims: The tumor suppressor p53 is depleted in many tumor cells by the E3 ubiquitin ligase mouse double minute 2 homolog (MDM2) through MDM2/p53 interaction. A novel target for inhibiting p53 degradation and for causing reexpression of p53wild type is inhibition of MDM2. The small molecule NVP-CGM097 is a novel MDM2 inhibitor. We investigated MDM2 inhibition as a target in neuroendocrine tumor cells in vitro. Methods: Human neuroendocrine tumor cell lines from the pancreas (BON1), lung (NCI-H727), and midgut (GOT1) were incubated with the MDM2 inhibitor NVP-CGM097 (Novartis) at concentrations from 4 to 2,500 nM. Results: While p53wild type GOT1 cells were sensitive to NVP-CGM097, p53mutated BON1 and p53mutated NCI-H727 cells were resistant to NVP-CGM097. Incubation of GOT1 cells with NVP-CGM097 at 100, 500, and 2,500 nM for 96 h caused a significant decline in cell viability to 84.9 ± 9.2% (p < 0.05), 77.4 ± 6.6% (p < 0.01), and 47.7 ± 9.2% (p < 0.01). In a Western blot analysis of GOT1 cells, NVP-CGM097 caused a dose-dependent increase in the expression of p53 and p21 tumor suppressor proteins and a decrease in phospho-Rb and E2F1. Experiments of co-incubation of NVP-CGM097 with 5-fluorouracil, temozolomide, or everolimus each showed additive antiproliferative effects in GOT1 cells. NVP-CGM097 and 5-fluorouracil increased p53 and p21 expression in an additive manner. Conclusions: MDM2 inhibition seems a promising novel therapeutic target in neuroendocrine tumors harboring p53wild type. Further investigations should examine the potential role of MDM2 inhibitors in neuroendocrine tumor treatment. Keywords: 5-Fluorouracil; Everolimus; GOT1; MDM2 inhibitor; NVP-CGM097; Neuroendocrine tumor; Temozolomide; p21; p53
    corecore