22 research outputs found

    Phase-specific signatures of wound fibroblasts and matrix patterns define cancer-associated fibroblast subtypes

    Full text link
    Healing wounds and cancers present remarkable cellular and molecular parallels, but the specific roles of the healing phases are largely unknown. We developed a bioinformatics pipeline to identify genes and pathways that define distinct phases across the time-course of healing. Their comparison to cancer transcriptomes revealed that a resolution phase wound signature is associated with increased severity in skin cancer and enriches for extracellular matrix-related pathways. Comparisons of transcriptomes of early- and late-phase wound fibroblasts vs skin cancer-associated fibroblasts (CAFs) identified an "early wound" CAF subtype, which localizes to the inner tumor stroma and expresses collagen-related genes that are controlled by the RUNX2 transcription factor. A "late wound" CAF subtype localizes to the outer tumor stroma and expresses elastin-related genes. Matrix imaging of primary melanoma tissue microarrays validated these matrix signatures and identified collagen- vs elastin-rich niches within the tumor microenvironment, whose spatial organization predicts survival and recurrence. These results identify wound-regulated genes and matrix patterns with prognostic potential in skin cancer

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Phase-specific signatures of wound fibroblasts and matrix patterns define cancer-associated fibroblast subtypes

    No full text
    Healing wounds and cancers present remarkable cellular and molecular parallels, but the specific roles of the healing phases are largely unknown. We developed a bioinformatics pipeline to identify genes and pathways that define distinct phases across the time-course of healing. Their comparison to cancer transcriptomes revealed that a resolution phase wound signature is associated with increased severity in skin cancer and enriches for extracellular matrix-related pathways. Comparisons of transcriptomes of early- and late-phase wound fibroblasts vs skin cancer-associated fibroblasts (CAFs) identified an "early wound" CAF subtype, which localizes to the inner tumor stroma and expresses collagen-related genes that are controlled by the RUNX2 transcription factor. A "late wound" CAF subtype localizes to the outer tumor stroma and expresses elastin-related genes. Matrix imaging of primary melanoma tissue microarrays validated these matrix signatures and identified collagen- vs elastin-rich niches within the tumor microenvironment, whose spatial organization predicts survival and recurrence. These results identify wound-regulated genes and matrix patterns with prognostic potential in skin cancer.ISSN:0945-053XISSN:1569-180

    Reproducibililty of dynamic cerebral autoregulation parameters : a multi-centre, multi-method study

    No full text
    OBJECTIVE: Different methods to calculate dynamic cerebral autoregulation (dCA) parameters are available. However, most of these methods demonstrate poor reproducibility that limit their reliability for clinical use. Inter-centre differences in study protocols, modelling approaches and default parameter settings have all led to a lack of standardisation and comparability between studies. We evaluated reproducibility of dCA parameters by assessing systematic errors in surrogate data resulting from different modelling techniques. APPROACH: Fourteen centres analysed 22 datasets consisting of two repeated physiological blood pressure measurements with surrogate cerebral blood flow velocity signals, generated using Tiecks curves (autoregulation index, ARI 0-9) and added noise. For reproducibility, dCA methods were grouped in three broad categories: 1. Transfer function analysis (TFA)-like output; 2. ARI-like output; 3. Correlation coefficient-like output. For all methods, reproducibility was determined by one-way intraclass correlation coefficient analysis (ICC). MAIN RESULTS: For TFA-like methods the mean (SD; [range]) ICC gain was 0.71 (0.10; [0.49-0.86]) and 0.80 (0.17; [0.36-0.94]) for VLF and LF (p  =  0.003) respectively. For phase, ICC values were 0.53 (0.21; [0.09-0.80]) for VLF, and 0.92 (0.13; [0.44-1.00]) for LF (p  <  0.001). Finally, ICC for ARI-like methods was equal to 0.84 (0.19; [0.41-0.94]), and for correlation-like methods, ICC was 0.21 (0.21; [0.056-0.35]). SIGNIFICANCE: When applied to realistic surrogate data, free from the additional exogenous influences of physiological variability on cerebral blood flow, most methods of dCA modelling showed ICC values considerably higher than what has been reported for physiological data. This finding suggests that the poor reproducibility reported by previous studies may be mainly due to the inherent physiological variability of cerebral blood flow regulatory mechanisms rather than related to (stationary) random noise and the signal analysis methods.status: publishe

    Assessment of dynamic cerebral autoregulation in humans: Is reproducibility dependent on blood pressure variability?

    Get PDF
    We tested the influence of blood pressure variability on the reproducibility of dynamic cerebral autoregulation (DCA) estimates. Data were analyzed from the 2nd CARNet bootstrap initiative, where mean arterial blood pressure (MABP), cerebral blood flow velocity (CBFV) and end tidal CO2 were measured twice in 75 healthy subjects. DCA was analyzed by 14 different centers with a variety of different analysis methods. Intraclass Correlation (ICC) values increased significantly when subjects with low power spectral density MABP (PSD-MABP) values were removed from the analysis for all gain, phase and autoregulation index (ARI) parameters. Gain in the low frequency band (LF) had the highest ICC, followed by phase LF and gain in the very low frequency band. No significant differences were found between analysis methods for gain parameters, but for phase and ARI parameters, significant differences between the analysis methods were found. Alternatively, the Spearman-Brown prediction formula indicated that prolongation of the measurement duration up to 35 minutes may be needed to achieve good reproducibility for some DCA parameters. We conclude that poor DCA reproducibility (ICC and lt;0.4) can improve to good (ICC and gt; 0.6) values when cases with low PSD-MABP are removed, and probably also when measurement duration is increased. © 2020 Elting et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    corecore