12 research outputs found

    Long-term experiments to investigate irreversibility in sorption of pesticides to soil

    Get PDF
    Experiments investigated irreversibility in pesticide sorption to soil. Sorption behaviour under abiotic conditions was quantified for chlorotoluron, prometryn and hexaconazole in three soils over periods of up to 274 days. An isotope-exchange procedure was used whereby sorption of 12C- and 14C-pesticide isotopes in shaken suspensions of three soils (7-168 days shaking) was followed by substitution of the isotopes in the liquid phase and a 14-day exchange phase. This was followed by forced isotope exchange where the sorbed 14C material was desorbed by adding an excess of non-radiolabelled compound. Experiments were concluded with solvent extraction and soil combustion to determine remaining radioactivity. The pesticide-soil systems took around four months to approach sorption equilibrium, resulting in strong asymmetry between the profiles of exchange for isotopes of all three compounds. Under the steep concentration gradient of forced isotope exchange, physically entrapped residues were released back into solution and small amounts of radioactivity were still being released at the termination of the experiment. Results were shown not to deviate markedly from ideal behaviour based on the assumption that sorption is fully reversible. Whilst the timescales for release of sorbed residues back into solution were very long, soil combustion at study termination only yielded <1-2% of applied radioactivity; this confirms that sorption processes under abiotic soil conditions were overwhelmingly reversible for these compounds and set of soils

    Impacts of Climate Change on indirect human exposure to pathogens and chemicals from agriculture

    Get PDF
    Objective: Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources: In this review, we used expert input and considered literature on climate change ; health effects resulting from exposure to pathogens and chemicals arising from agriculture ; inputs of chemicals and pathogens to agricultural systems ; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis: We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment ; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems ; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions: Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes

    Influence of kinetic sorption and diffusion on pesticide movement through aggregated soils

    Get PDF
    Laboratory studies were carried out to investigate solute leaching at different times from application in relation to temperature and initial soil moisture. Aggregates of a heavy clay soil were treated with a non-interactive solute (bromide) and the herbicides chlorotoluron, isoproturon and triasulfuron. The soil was incubated at 90% field capacity and either 5 or 15oC. The influence of application to initially dry and initially wet aggregates on the behaviour of isoproturon was also investigated. At intervals, samples were either leached in small columns, centrifuged to characterise the fraction of chemical available in pore water under natural moisture conditions or extracted with organic solvents to assess total residues in soil. Bromide concentrations in leachate and in pore water extracted by centrifugation were constant with time. In contrast, availability for leaching and concentration in pore water of the herbicides decreased with increasing time from application in soil incubated at 15oC. The effect of residence time was much smaller at 5 than at 15oC. At the higher temperature, pesticide concentrations in leachate and pore water declined faster than would be expected from degradation alone, probably due to slow diffusion of the pesticides into soil aggregates where they are less available for leaching and/or slow sorption-desorption. The faster decline in availability for leaching at 15 than at 5oC was attributed to faster degradation of the readily available fraction. There was no significant influence of initial soil moisture on either the leaching behaviour of isoproturon or its availability in soil water

    Evaluation of probabilistic modelling approaches against data on leaching of isoproturon through undisturbed lysimeters

    Get PDF
    This study evaluated probabilistic modelling approaches against data on leaching of isoproturon through two contrasting soil types. Leaching through undisturbed lysimeters from a sandy loam (Wick series) and a moderately structured clay loam (Hodnet series) was investigated in seven replicates. The variability of soil properties and of sorption and degradation of isoproturon was estimated by taking 6-14 samples within the areas of lysimeter extraction in the field. Normal distributions were assigned to Koc and DT50 and a large number of values for these two parameters were sampled from each distribution. Parameter values were used to simulate movement of isoproturon through the lysimeters with the preferential flow model MACRO. Uncertainty in output distributions was compared with the variability of measured data. A constrained probabilistic assessment varying only degradation and sorption properties was sufficient to match the observed variability in cumulative leaching from the coarse-textured Wick soil (CV = 79%). Variation of pesticide properties alone could not match observed variability in cumulative leaching from the structured Hodnet soil (CV = 61%) and variability in a number of soil properties was incorporated. For both soils, constrained probabilistic approaches where only the top few most sensitive model inputs were varied were sufficient to match or exceed observed variability

    Considerations of temperature in the context of the persistence classification in the EU

    No full text
    Abstract Simulation degradation studies for industrial chemicals, biocidal products and plant protection products are required in the EU to estimate half-lives in soil, water and sediment for the comparison to persistence criteria for hazard (P/vP) assessment, and for use in exposure assessments. There is a discrepancy between European regulatory approaches regarding the temperature at which degradation half-lives should be (1) measured in simulation degradation testing of environmental compartments, and (2) compared to the P/vP criteria. In this paper, an opinion is provided on the options for the experimental temperature and extrapolation to other conditions. A review of the historical development of persistence criteria did not give conclusive evidence of the temperature at which the half-lives that underpin the P-criteria were measured, but room temperature is likely. Half-lives measured at 20 °C are in line with the intentions of some international agreements, but in the EU there is a continued political debate regarding the relevant temperature for comparison with persistence criteria. Measuring degradation at 20 °C has the advantage that metabolites/transformation products can be identified with greater accuracy, and that kinetic fits to determine half-lives for parent compounds and metabolites carry less uncertainty. Extrapolation of half-lives to lower temperatures is possible for assessing environmental exposure, but the uncertainty of the persistence classification is smaller when measured half-lives are used for direct comparison with P/vP criteria, without extrapolation. Model simulations demonstrate the pattern of concentrations that can be expected for realistic worst case climate scenarios in the EU based on the half-life of 120 days in soil at 20 °C and of 40 days in water at 20 °C, and their temporal and spatial variability

    User subjectivity in Monte Carlo modeling of pesticide exposure

    No full text
    International audienceMonte Carlo techniques are increasingly used in pesticide exposure modeling to evaluate the uncertainty in predictions arising from uncertainty in input parameters and to estimate the confidence that should be assigned to the modeling results. The approach typically involves running a deterministic model repeatedly for a large number of input values sampled from statistical distributions. In the present study, six modelers made choices regarding the type and parameterization of distributions assigned to degradation and sorption data for an example pesticide, the correlation between the parameters, the tool and method used for sampling, and the number of samples generated. A leaching assessment was carried out using a single model and scenario and all data for sorption and degradation generated by the six modelers. The distributions of sampled parameters differed between the modelers, and the agreement with the measured data was variable. Large differences were found between the upper percentiles of simulated concentrations in leachate. The probability of exceeding 0.1 μg/L ranged from 0 to 35.7%. The present study demonstrated that subjective choices made in Monte Carlo modeling introduce variability into probabilistic modeling and that the results need to be interpreted with care

    Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture

    No full text
    Climate change is likely to affect the nature of pathogens/ chemicals in the environment and their fate and transport. We assess the implications of climate change for changes in human exposures to pathogens/chemicals in agricultural systems in the UK and discuss the effects on health impacts, using expert input and literature on climate change; health effects from exposure to pathogens/chemicals arising from agriculture; inputs of chemicals/pathogens to agricultural systems; and human exposure pathways for pathogens/chemicals in agricultural systems. We established the evidence base for health effects of chemicals/pathogens in the agricultural environment; determined the potential implications of climate change on chemical/pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of various contaminants. We merged data to assess the implications of climate change in terms of indirect human exposure to pathogens/chemicals in agricultural systems, and defined recommendations on future research and policy changes to manage adverse increases in risks
    corecore