51 research outputs found

    Correction to: The role of molecular imaging in the frame of the revised dementia with Lewy body criteria

    Get PDF
    In the article mentioned above all authors were assigned affiliation 14, which is wrong. Affiliation 14 belongs only to author Agostino Chiaravalloti

    Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability

    Get PDF
    Mutations in the ATP13A2 (PARK9) and FBXO7 (PARK15) genes are linked to different forms of autosomal recessive juvenile-onset neurodegenerative diseases with overlapping phenotypes, including levodopa-responsive parkinsonism, pyramidal disturbances, cognitive decline, and supranuclear gaze disturbance. However, the associated genotypes and phenotypes are poorly characterized due to the small number of patients described. Here, we report clinical, instrumental, and genetic findings in an Italian family with novel PARK9 and PARK15 mutations. The proband developed a severe progressive phenotype including juvenile-onset parkinsonism, pyramidal disturbances, cognitive decline, and oculomotor abnormalities. On the contrary, his brother only shows mild abnormalities (pyramidal, cognitive, and oculomotor) on the neurological examination at the age of 31 years. These two brothers both carry a novel homozygous PARK9 missense (p.G877R) and a novel heterozygous PARK15 mutation (p.R481C). The PARK9 mutation replaces a crucial residue for the ATPase activity, and is therefore most likely a loss-of-function mutation and disease-causing in homozygous state. The pathogenic significance of the PARK15 single heterozygous mutation remains unclear. In both sibs, DaTSCAN single photon emission computed tomography showed marked nigrostriatal dopaminergic defects, and transcranial magnetic stimulation detected prolonged central motor conduction time. MRI, including T2*-weighted imaging, detected no evidence of brain iron accumulation. This family, the third reported with homozygous PARK9 mutations and the first with mutations in two genes for atypical juvenile parkinsonism, illustrates that PARK9-linked disease might display wide intra-familial clinical variability and milder phenotypes, suggesting the existence of strong, still unknown, modifiers

    Altered Patterns of Brain Glucose Metabolism Involve More Extensive and Discrete Cortical Areas in Treatment-resistant Schizophrenia Patients Compared to Responder Patients and Controls: Results From a Head-to-Head 2-[18F]-FDG-PET Study

    Get PDF
    Treatment resistant schizophrenia (TRS) affects almost 30% of patients with schizophrenia and has been considered a different phenotype of the disease. In vivo characterization of brain metabolic patterns associated with treatment response could contribute to elucidate the neurobiological underpinnings of TRS. Here, we used 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) to provide the first head-to-head comparative analysis of cerebral glucose metabolism in TRS patients compared to schizophrenia responder patients (nTRS), and controls. Additionally, we investigated, for the first time, the differences between clozapine responders (Clz-R) and non-responders (Clz-nR)

    Molecular imaging of neuroinflammation in preclinical rodent models using positron emission tomography.

    No full text
    Neuroinflammation (NI) is an adaptive response to different noxious stimuli, involving microglia, astrocytes and peripheral immune cells. NI is a hallmark of several acute and chronic diseases of central nervous system (CNS) and contributes to both damage and repair of CNS tissue. Interventional or genetically modified rodent models mimicking human neuropathologies may provide valuable insights on basic mechanisms of NI, but also for improving the development of new diagnostic and therapeutic strategies. Preclinical positron emission tomography (PET) allows to investigate noninvasively the inflammatory response in CNS of rodent models at a molecular level, validating innovative probes for early diagnosis, and characterizing the time course of neuroinflammatory changes and their relationship with disease progression, as well as the effects of experimental treatments with high translational potential. In particular, recent efforts of preclinical PET field are intended to develop specific and selective radiotracers that target the activation of innate immune system in CNS. Here, we have reviewed the state of art for PET in relevant rodent models of acute and chronic neuropathologies associated with NI, with particular regard on imaging of activated microglia and astrocytes
    • …
    corecore