37 research outputs found

    Signalling Crosstalk of Plant Defence Responses to Xylem-invading Pathogens

    Get PDF
    Xylem is a plant vascular tissue that transports water and dissolved minerals from the roots to the rest of the plant. It consists of specialized water-conducting tracheary elements, supporting fibre cells and storage parenchyma cells. Certain plant pathogenic fungi, oomycetes and bacteria have evolved strategies to invade xylem vessels and cause highly destructive vascular wilt diseases that affect the crop production and forest ecosystems worldwide. In this chapter, we consider the molecular mechanisms of root-specific defence responses against vascular wilt pathogens, with an emphasis on the most important and well-studied fungal (Verticillium spp. and Fusarium oxysporum) and bacterial (Xanthomonas spp. and Ralstonia solanacearum) pathogens. In particular, we present the current understanding of plant immune responses, from invasion perception to signal transduction and termination. Furthermore, we address the role of specific transcription factors involved in plant immunity and their regulatory network. We also highlight the crucial roles of phytohormones as signalling molecules in local and systemic defence responses. Finally, we summarize the current knowledge of plant defence responses to xylem-invading pathogens to devise new strategies and methods for controlling these destructive plant pathogens

    Chitin-Binding Protein of Verticillium nonalfalfae Disguises Fungus from Plant Chitinases and Suppresses Chitin-Triggered Host Immunity

    Get PDF
    During fungal infections, plant cells secrete chitinases, which digest chitin in the fungal cell walls. The recognition of released chitin oligomers via lysin motif (LysM)-containing immune host receptors results in the activation of defense signaling pathways. We report here that Verticillium nonalfalfae, a hemibiotrophic xylem-invading fungus, prevents these digestion and recognition processes by secreting a carbohydrate-binding motif 18 (CBM18)-chitin-binding protein, VnaChtBP, which is transcriptionally activated specifically during the parasitic life stages. VnaChtBP is encoded by the Vna8.213 gene, which is highly conserved within the species, suggesting high evolutionary stability and importance for the fungal lifestyle. In a pathogenicity assay, however, Vna8.213 knockout mutants exhibited wilting symptoms similar to the wild-type fungus, suggesting that Vna8.213 activity is functionally redundant during fungal infection of hop. In a binding assay, recombinant VnaChtBP bound chitin and chitin oligomers in vitro with submicromolar affinity and protected fungal hyphae from degradation by plant chitinases. Moreover, the chitin-triggered production of reactive oxygen species from hop suspension cells was abolished in the presence of VnaChtBP, indicating that VnaChtBP also acts as a suppressor of chitin-triggered immunity. Using a yeast-two-hybrid assay, circular dichroism, homology modeling, and molecular docking, we demonstrated that VnaChtBP forms dimers in the absence of ligands and that this interaction is stabilized by the binding of chitin hexamers with a similar preference in the two binding sites. Our data suggest that, in addition to chitin-binding LysM (CBM50) and Avr4 (CBM14) fungal effectors, structurally unrelated CBM18 effectors have convergently evolved to prevent hydrolysis of the fungal cell wall against plant chitinases and to interfere with chitin-triggered host immunity.</p

    APS8 Delays Tumor Growth in Mice by Inducing Apoptosis of Lung Adenocarcinoma Cells Expressing High Number of α7 Nicotinic Receptors

    No full text
    The alkylpyridinium polymer APS8, a potent antagonist of &alpha;7 nicotinic acetylcholine receptors (nAChRs), selectively induces apoptosis in non-small cell lung cancer cells but not in normal lung fibroblasts. To explore the potential therapeutic value of APS8 for at least certain types of lung cancer, we determined its systemic and organ-specific toxicity in mice, evaluated its antitumor activity against adenocarcinoma xenograft models, and examined the in-vitro mechanisms of APS8 in terms of apoptosis, cytotoxicity, and viability. We also measured Ca2+ influx into cells, and evaluated the effects of APS8 on Ca2+ uptake while siRNA silencing of the gene for &alpha;7 nAChRs, CHRNA7. APS8 was not toxic to mice up to 5 mg/kg i.v., and no significant histological changes were observed in mice that survived APS8 treatment. Repetitive intratumoral injections of APS8 (4 mg/kg) significantly delayed growth of A549 cell tumors, and generally prevented regrowth of tumors, but were less effective in reducing growth of HT29 cell tumors. APS8 impaired the viability of A549 cells in a dose-dependent manner and induced apoptosis at micro molar concentrations. Nano molar APS8 caused minor cytotoxic effects, while cell lysis occurred at APS8 &gt;3 &micro;M. Furthermore, Ca2+ uptake was significantly reduced in APS8-treated A549 cells. Observed differences in response to APS8 can be attributed to the number of &alpha;7 nAChRs expressed in these cells, with those with more AChRs (i.e., A549 cells) being more sensitive to nAChR antagonists like APS8. We conclude that &alpha;7 nAChR antagonists like APS8 have potential to be used as therapeutics for tumors expressing large numbers of &alpha;7 nAChRs

    Late blight resistance conferred by Rpi-Smira2/R8 in potato genotypes in vitro depends on the genetic background

    Get PDF
    Potato production worldwide is threatened by late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary. Highly resistant potato cultivars were developed in breeding programs, using resistance gene pyramiding methods. In Sárpo Mira potatoes, five resistance genes (R3a, R3b, R4, Rpi-Smira1, and Rpi-Smira2/R8) are reported, with the latter gene assumed to be the major contributor. To study the level of late blight resistance conferred by the Rpi-Smira2/R8 gene, potato genotypes with only the Rpi-Smira2/R8 gene were selected from progeny population in which susceptible cultivars were crossed with Sárpo Mira. Ten R8 potato genotypes were obtained using stepwise marker-assisted selection, and agroinfiltration of the avirulence effector gene Avr4. Nine of these R8 genotypes were infected with both Slovenian P. infestans isolates and aggressive foreign isolates. All the progeny R8 genotypes are resistant to the Slovenian P. infestans isolate 02_07, and several show milder late blight symptoms than the corresponding susceptible parent after inoculation with other isolates. When inoculated with foreign P. infestans isolates, the genotype C571 shows intermediate resistance, similar to that of Sárpo Mira. These results suggest that Rpi-Smira2/R8 contributes to late blight resistance, although this resistance is not guaranteed solely by the presence of the R8 in the genome

    Late blight resistance conferred by Rpi-Smira2/R8 in potato genotypes in vitro depends on the genetic background

    Get PDF
    Potato production worldwide is threatened by late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary. Highly resistant potato cultivars were developed in breeding programs, using resistance gene pyramiding methods. In Sárpo Mira potatoes, five resistance genes (R3a, R3b, R4, Rpi-Smira1, and Rpi-Smira2/R8) are reported, with the latter gene assumed to be the major contributor. To study the level of late blight resistance conferred by the Rpi-Smira2/R8 gene, potato genotypes with only the Rpi-Smira2/R8 gene were selected from progeny population in which susceptible cultivars were crossed with Sárpo Mira. Ten R8 potato genotypes were obtained using stepwise marker-assisted selection, and agroinfiltration of the avirulence effector gene Avr4. Nine of these R8 genotypes were infected with both Slovenian P. infestans isolates and aggressive foreign isolates. All the progeny R8 genotypes are resistant to the Slovenian P. infestans isolate 02_07, and several show milder late blight symptoms than the corresponding susceptible parent after inoculation with other isolates. When inoculated with foreign P. infestans isolates, the genotype C571 shows intermediate resistance, similar to that of Sárpo Mira. These results suggest that Rpi-Smira2/R8 contributes to late blight resistance, although this resistance is not guaranteed solely by the presence of the R8 in the genome

    Hop Polyphenols in Relation to Verticillium Wilt Resistance and Their Antifungal Activity

    No full text
    (1) Background: Verticillium wilt (VW) of hop is a devastating disease caused by the soil-borne fungi Verticillium nonalfalfae and Verticillium dahliae. As suggested by quantitative trait locus (QTL) mapping and RNA-Seq analyses, the underlying molecular mechanisms of resistance in hop are complex, consisting of preformed and induced defense responses, including the synthesis of various phenolic compounds. (2) Methods: We determined the total polyphenolic content at two phenological stages in roots and stems of 14 hop varieties differing in VW resistance, examined the changes in the total polyphenols of VW resistant variety Wye Target (WT) and susceptible Celeia (CE) on infection with V. nonalfalfae, and assessed the antifungal activity of six commercial phenolic compounds and total polyphenolic extracts from roots and stems of VW resistant WT and susceptible CE on the growth of two different V. nonalfalfae hop pathotypes. (3) Results: Generally, total polyphenols were higher in roots than stems and increased with maturation of the hop. Before flowering, the majority of VW resistant varieties had a significantly higher content of total polyphenols in stems than susceptible varieties. At the symptomatic stage of VW disease, total polyphenols decreased in VW resistant WT and susceptible CE plants in both roots and stems. The antifungal activity of total polyphenolic extracts against V. nonalfalfae was higher in hop extracts from stems than those from roots. Among the tested phenolic compounds, only p-coumaric acid and tyrosol markedly restricted fungal growth. (4) Conclusions: Although the correlation between VW resistance and total polyphenols content is not straightforward, higher levels of total polyphenols in the stems of the majority of VW resistant hop varieties at early phenological stages probably contribute to fast and efficient activation of signaling pathways, leading to successful defense against V. nonalfalfae infection

    Strategic concept paper for Bioeconomy in Slovenia: from a patchwork of good practices to an integrated, sustainable and robust bioeconomy system [version 1; peer review: 2 approved]

    No full text
    While Slovenia has significant bioeconomy potential, it remains underutilized, facing challenges in primary bioeconomy sectors, their integration along value chains, uptake of industrial innovation, and institutional coordination. This paper aims to support the unlocking of Slovenia's bioeconomy potential, and foster sustainable and integrated development of its value chains. It provides the evidence base of the composition, volumes and current utilization of the available biomass streams from agriculture, forestry and aquatic systems. It discusses the potential uses of these resources and highlights the need for improved logistics and scalability. Additionally, the structure and performance of bioeconomy-related industries in Slovenia are examined, emphasizing the importance of firm consolidation and integration for successful bioeconomy development. It emphasizes the importance of sector-specific transformation pathways, from primary production to expanding hybrid sectors. The exchange between policymakers and stakeholders is encouraged to recognize synergies, accelerate cooperation, and improve economic performance while closing material and energy loops. The document also reviews the supporting environment for bioeconomy development and proposes steps for improved coordination and strategic planning

    Hop polyphenols in relation to Verticillium wilt resistance and their antifungal activity

    Full text link
    (1) Background: Verticillium wilt (VW) of hop is a devastating disease caused by the soil-borne fungi Verticillium nonalfalfae and Verticillium dahliae. As suggested by quantitative trait locus (QTL) mapping and RNA-Seq analyses, the underlying molecular mechanisms of resistance in hop are complex, consisting of preformed and induced defense responses, including the synthesis of various phenolic compounds. (2) Methods: We determined the total polyphenolic content at two phenological stages in roots and stems of 14 hop varieties differing in VW resistance, examined the changes in the total polyphenols of VW resistant variety Wye Target (WT) and susceptible Celeia (CE) on infection with V. nonalfalfae, and assessed the antifungal activity of six commercial phenolic compounds and total polyphenolic extracts from roots and stems of VW resistant WT and susceptible CE on the growth of two different V. nonalfalfae hop pathotypes. (3) Results: Generally, total polyphenols were higher in roots than stems and increased with maturation of the hop. Before flowering, the majority of VW resistant varieties had a significantly higher content of total polyphenols in stems than susceptible varieties. At the symptomatic stage of VW disease, total polyphenols decreased in VW resistant WT and susceptible CE plants in both roots and stems. The antifungal activity of total polyphenolic extracts against V. nonalfalfae was higher in hop extracts from stems than those from roots. Among the tested phenolic compounds, only p-coumaric acid and tyrosol markedly restricted fungal growth. (4) Conclusions: Although the correlation between VW resistance and total polyphenols content is not straightforward, higher levels of total polyphenols in the stems of the majority of VW resistant hop varieties at early phenological stages probably contribute to fast and efficient activation of signaling pathways, leading to successful defense against V. nonalfalfae infection
    corecore