74 research outputs found

    A matter of time: improvement of visual temporal processing during training-induced restoration of light detection performance

    Get PDF
    The issue of how basic sensory and temporal processing are related is still unresolved. We studied temporal processing, as assessed by simple visual reaction times (AT) and double-pulse resolution (DPR), in patients with partial vision loss after visual pathway lesions and investigated whether vision restoration training (VRT), a training program designed to improve light detection performance, would also affect temporal processing. Perimetric and campimetric visual field tests as well as maps of DPR thresholds and RI were acquired before and after a 3 months training period with VRT. Patient performance was compared to that of age matched healthy subjects. Intact visual field size increased during training. Averaged across the entire visual field, DPR remained constant while RI improved slightly. However, in transition zones between the blind and intact areas (areas of residual vision) where patients had shown between 20 and 80% of stimulus detection probability in pre-training visual field tests, both DPR and RI improved markedly. The magnitude of improvement depended on the defect depth (or degree of intactness) of the respective region at baseline. Inter-individual training outcome variability was very high, with some patients showing little change and others showing performance approaching that of healthy controls. Training-induced improvement of light detection in patients with visual field loss thus generalized to dynamic visual functions. The findings suggest that similar neural mechanisms may underlie the impairment and subsequent training-induced functional recovery of both light detection and temporal processing

    Effects of alternating current stimulation on the healthy and diseased brain

    Get PDF
    Cognitive and neurological dysfunctions can severely impact a patient's daily activities. In addition to medical treatment, non-invasive transcranial alternating current stimulation (tACS) has been proposed as a therapeutic technique to improve the functional state of the brain. Although during the last years tACS was applied in numerous studies to improve motor, somatosensory, visual and higher order cognitive functions, our knowledge is still limited regarding the mechanisms as to which type of ACS can affect cortical functions and altered neuronal oscillations seem to be the key mechanism. Because alternating current send pulses to the brain at predetermined frequencies, the online- and after-effects of ACS strongly depend on the stimulation parameters so that “optimal” ACS paradigms could be achieved. This is of interest not only for neuroscience research but also for clinical practice. In this study, we summarize recent findings on ACS-effects under both normal conditions and in brain diseases

    R-esp1, a rat homologue of Drosophila Groucho, is differentially expressed after optic nerve crush and mediates NGF-induced survival of PC12 cells

    Get PDF
    AbstractThe differential display reverse transcription polymerase chain reaction method was used to detect alterations in gene expression in the superior colliculus after optic nerve crush in adult rats. One of the most prominent changes observed was the selective induction of R-esp1, a homologue of the Drosophila enhancer of split locus (Groucho). Therefore, we studied the influence of R-esp1 on nerve growth factor (NGF)-induced cell survival of PC12 cells. Overexpression of R-esp1 promotes cell survival even in the absence of NGF and, conversely, it is reduced by antisense-mediated inhibition of R-esp1 expression. In conclusion, we propose a novel model in which R-esp1 protein mediates the NGF-signaling pathway

    Pathological completion in the intact visual field of hemianopia patients

    Get PDF
    We investigated figure segregation in the intact visual field (VF) of hemianopia patients. Three patients and matched controls performed a Yes–No figure detection task, where square or square fragments were embedded in a background of randomly oriented Gabor elements. We varied orientation and number of the fragment elements, stimulus eccentricity and background density (BD). Figure detection was impaired in all three patients in the entire intact VF, but potentially more pronounced in patients with cortical lesions. “Pathological completion” was most frequently observed for high BDs and for square fragments oriented towards the blind hemifield. Our findings confirm contour integration deficits in the intact VF of hemianopia patients. Further, our results indicate that (1) contour integration deficits are exacerbated by contextual interaction and (2) “pathological completion” appears to be more likely associated with lesions of cortical rather than geniculo-striate origin. The deficits point to increased lateral suppressive inputs from background elements

    Retinal Origin of Electrically Evoked Potentials in Response to Transcorneal Alternating Current Stimulation in the Rat

    Get PDF
    PURPOSE: Little is known about the physiological mechanisms underlying the reported therapeutic effects of transorbital alternating current stimulation (ACS) in vision restoration, or the origin of the recorded electrically evoked potentials (EEPs) during such stimulation. We examined the issue of EEP origin and electrode configuration for transorbital ACS and characterized the physiological responses to CS in different structures of the visual system. METHODS: We recorded visually evoked potentials (VEPs) and EEPs from the rat retina, visual thalamus, tectum, and visual cortex. The VEPs were evoked by light flashes and EEPs were evoked by electric stimuli delivered by two electrodes placed either together on the same eye or on the eyeball and in the neck. Electrically evoked potentials and VEPs were recorded before and after bilateral intraorbital injections of tetrodotoxin that blocked retinal ganglion cell activity. RESULTS: Tetrodotoxin abolished VEPs at all levels in the visual pathway, confirming successful blockage of ganglion cell activity. Tetrodotoxin also abolished EEPs and this effect was independent of the stimulating electrode configurations. CONCLUSIONS: Transorbital electrically evoked responses in the visual pathway, irrespective of reference electrode placement, are initiated by activation of the retina and not by passive conductance and direct activation of neurons in other visual structures. Thus, placement of stimulating electrodes exclusively around the eyeball may be sufficient to achieve therapeutic effects

    Non-invasive electrical brain stimulation for vision restoration after stroke : An exploratory randomized trial (REVIS)

    Get PDF
    Background: Occipital strokes often cause permanent homonymous hemianopia leading to significant disability. In previous studies, non-invasive electrical brain stimulation (NIBS) has improved vision after optic nerve damage and in combination with training after stroke. Objective: We explored different NIBS modalities for rehabilitation of hemianopia after chronic stroke. Methods: In a randomized, double-blinded, sham-controlled, three-armed trial, altogether 56 patients with homonymous hemianopia were recruited. The three experiments were: i) repetitive transorbital alternating current stimulation (rtACS, n=8) vs. rtACS with prior cathodal transcranial direct current stimulation over the intact visual cortex (tDCS/rtACS, n=8) vs. sham (n = 8); ii) rtACS (n = 9) vs. sham (n = 9); and iii) tDCS of the visual cortex (n = 7) vs. sham (n = 7). Visual functions were evaluated before and after the intervention, and after eight weeks follow-up. The primary outcome was change in visual field assessed by high-resolution and standard perimetries. The individual modalities were compared within each experimental arm. Results: Primary outcomes in Experiments 1 and 2 were negative. Only significant between-group change was observed in Experiment 3, where tDCS increased visual field of the contralesional eye compared to sham. tDCS/rtACS improved dynamic vision, reading, and visual field of the contralesional eye, but was not superior to other groups. rtACS alone increased foveal sensitivity, but was otherwise ineffective. All trial-related procedures were tolerated well. Conclusions: This exploratory trial showed safety but no main effect of NIBS on vision restoration after stroke. However, tDCS and combined tDCS/rtACS induced improvements in visually guided performance that need to be confirmed in larger-sample trials.Peer reviewe
    corecore