44 research outputs found

    Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host

    Get PDF
    International audienceBACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein

    Production of selenium nanoparticles in Pseudomonas putida KT2440

    Get PDF
    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L−1 h−1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles.Universidad de Costa Rica/[809-B5-A68]/UCR/Costa RicaCentro Nacional de Innovaciones Biotecnológicas/[]/CENIBiot/Costa RicaBio-SEA/[]//FranciaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de QuímicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Electroquímica y Energía Química (CELEQ)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Productos Naturales (CIPRONA

    mgpS, a Complex Regulatory Locus Involved in the Transcriptional Control of the puc and puf Operons in Rhodobacter sphaeroides 2.4.1

    No full text
    International audienceA new method has been developed in order to select mutants showing decreased puc operon transcription in Rhodobacter sphaeroides 2.4.1. A transcriptional fusion of a promoterless fragment derived from the sacB gene, encoding the levansucrase from Bacillus subtilis, to the upstream regulatory region of the puc operon has been constructed. With appropriate levels of exogenous sucrose, survivors of a sucrose killing challenge have been isolated. Subsequent analysis revealed the presence of both cis-and transacting ''down'' mutations in relation to puc operon expression. One of the transacting regulatory mutations was chosen for further study. The original mutation showed less than 2% of the level of puc operon transcription compared with the wild type under aerobic conditions and an 86% reduction under dark dimethyl sulfoxide conditions. This mutation can be complemented by a 3.9-kb BamHI DNA fragment derived from a cosmid contained within a genomic cosmid bank. DNA sequence analysis of this fragment revealed the presence of a 2.8-kb open reading frame, designated mgpS, which would encode a 930-amino-acid protein. The N-terminal portion of the putative protein product presents homologies to proteins of the RNA helicase family. Disruption of the chromosomal mgpS resulted in decreased transcription of both puc and puf, while the presence of mgpS in multicopy in the wild type, 2.4.1, increased puc expression by a factor of 2 under aerobic conditions. Structural analysis of the mgpS locus revealed that expression of mgpS was likely to be complex. A smaller protein containing the 472 C-terminal amino acids of MgpS is able to act by itself as an activator of puc transcription and is expressed independently of the large open reading frame in which it is contained. This study pUI3111 pRK415 derivative ϩ 1.9-kb SstI-HindIII a fragment from pUI3105 inserted into SstI-EcoRI a of pRK415(ϩ); Tc r This study a The overhangs were made blunt with the Klenow fragment of DNA polymerase I before cloning. b The overhangs were made blunt with T4 DNA polymerase before cloning. c (Ϫ), insert DNA fragment having an orientation in the opposite direction of the tet and lac promoters. d (ϩ), insert DNA fragment having an orientation in the same direction as the tet and lac promoters

    mgpS, a complex regulatory locus involved in the transcriptional control of the puc and puf operons in Rhodobacter sphaeroides 2.4.1.

    No full text
    A new method has been developed in order to select mutants showing decreased puc operon transcription in Rhodobacter sphaeroides 2.4.1. A transcriptional fusion of a promoterless fragment derived from the sacB gene, encoding the levansucrase from Bacillus subtilis, to the upstream regulatory region of the puc operon has been constructed. With appropriate levels of exogenous sucrose, survivors of a sucrose killing challenge have been isolated. Subsequent analysis revealed the presence of both cis- and trans-acting "down" mutations in relation to puc operon expression. One of the trans-acting regulatory mutations was chosen for further study. The original mutation showed less than 2% of the level of puc operon transcription compared with the wild type under aerobic conditions and an 86% reduction under dark dimethyl sulfoxide conditions. This mutation can be complemented by a 3.9-kb BamHI DNA fragment derived from a cosmid contained within a genomic cosmid bank. DNA sequence analysis of this fragment revealed the presence of a 2.8-kb open reading frame, designated mgpS, which would encode a 930-amino-acid protein. The N-terminal portion of the putative protein product presents homologies to proteins of the RNA helicase family. Disruption of the chromosomal mgpS resulted in decreased transcription of both puc and puf, while the presence of mgpS in multicopy in the wild type, 2.4.1., increased puc expression by a factor of 2 under aerobic conditions. Structural analysis of the mgpS locus revealed that expression of mgpS was likely to be complex. A smaller protein containing the 472 C-terminal amino acids of MgpS is able to act by itself as an activator of puc transcription and is expressed independently of the large open reading frame in which it is contained
    corecore