75 research outputs found

    TIM-3 Expression Characterizes Regulatory T Cells in Tumor Tissues and Is Associated with Lung Cancer Progression

    Get PDF
    Background: T cell immunoglobulin-3 (TIM-3) has been established as a negative regulatory molecule and plays a critical role in immune tolerance. TIM-3 is upregulated in exhausted CD8 + T cells in both chronic infection and tumor. However, the nature of TIM-3 +CD4 + T cells in the tumor microenvironment is unclear. This study is to characterize TIM-3 expressing lymphocytes within human lung cancer tissues and establish clinical significance of TIM-3 expression in lung cancer progression. Methodology: A total of 51 human lung cancer tissue specimens were obtained from pathologically confirmed and newly diagnosed non-small cell lung cancer (NSCLC) patients. Leukocytes from tumor tissues, distal normal lung tissues, and peripheral blood mononuclear cells (PBMC) were analyzed for TIM-3 surface expression by flow cytometry. TIM-3 expression on tumor-infiltrating lymphocytes (TILs) was correlated with clinicopathological parameters. Conclusions: TIM-3 is highly upregulated on both CD4 + and CD8 + TILs from human lung cancer tissues but negligibly expressed on T cells from patients' peripheral blood. Frequencies of IFN-γ + cells were reduced in TIM-3 +CD8 + TILs compared to TIM-3 -CD8 + TILs. However, the level of TIM-3 expression on CD8 + TILs failed to associate with any clinical pathological parameter. Interestingly, we found that approximately 70% of TIM-3 +CD4 + TILs expressed FOXP3 and about 60% of FOXP3 + TILs were TIM-3 +. Importantly, TIM-3 expression on CD4 + T cells correlated with poor clinicopathological parameters of NSCLC such as nodal metastasis and advanced cancer stages. Our study reveals a new role of TIM-3 as an important immune regulator in the tumor microenvironment via its predominant expression in regulatory T cells. © 2012 Gao et al

    Regulation of T Cell Priming by Lymphoid Stroma

    Get PDF
    The priming of immune T cells by their interaction with dendritic cells (DCs) in lymph nodes (LN), one of the early events in productive adaptive immune responses, occurs on a scaffold of lymphoid stromal cells, which have largely been seen as support cells or sources of chemokines and homeostatic growth factors. Here we show that murine fibroblastic reticular cells (FRCs), isolated from LN of B6 mice, play a more direct role in the immune response by sensing and modulating T cell activation through their upregulation of inducible nitric oxide synthase (iNOS) in response to early T cell IFNγ production. Stromal iNOS, which only functions in very close proximity, attenuates responses to inflammatory DC immunization but not to other priming regimens and preferentially affects Th1 cells rather than Th2. The resultant nitric oxide production does not affect T cell-DC coupling or initial calcium signaling, but restricts homotypic T cell clustering, cell cycle progression, and proliferation. Stromal feedback inhibition thus provides basal attenuation of T cell responses, particularly those characterized by strong local inflammatory cues

    A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors

    Get PDF
    Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4 + T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention

    A synaptic basis for paracrine interleukin-2 signaling during homotypic T cell interaction

    No full text
    T cells slow their motility, increase adherence, and arrest after encounters with antigen-presenting cells (APCs) bearing peptide-MHC complexes. Here, we analyzed the cell-cell communication among activating T cells. In vivo and in vitro, activating T cells associated in large clusters that collectively persisted for > 30 min, but they also engaged in more transient interactions, apparently distal to APCs. Homotypic aggregation was driven by LFA-1 integrin interactions. Ultrastructural analysis revealed that cell-cell contacts between activating T cells were organized as multifocal synapses, and T cells oriented both the microtubule-organizing complex and interleukin-2 (IL-2) secretion toward this synapse. T cells engaged in homotypic interactions more effectively captured IL-2 relative to free cells. T cells receiving paracrine synaptic IL-2 polarized their IL-2 signaling subunits into the synaptic region and more efficiently phosphorylated the transcription factor STAT5, likely through a synapse-associated signaling complex. Thus, synapse-mediated cytokine delivery accelerates responses in activating T cells.X117774sciescopu

    Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting Th1 cells

    Get PDF
    Regulation of the immune response to self- and foreign antigens is vitally important for limiting immune pathology associated with both infections and hypersensitivity conditions. Control of autoimmune conditions can be reinforced by tolerance induction with peptide epitopes, but the mechanism is not currently understood. Repetitive intranasal administration of soluble peptide induces peripheral tolerance in myelin basic protein (MBP)–specific TCR transgenic mice. This is characterized by the presence of anergic, interleukin (IL)-10–secreting CD4(+) T cells with regulatory function (IL-10 T reg cells). The differentiation pathway of peptide-induced IL-10 T reg cells was investigated. CD4(+) T cells became anergic after their second encounter with a high-affinity MBP peptide analogue. Loss of proliferative capacity correlated with a switch from the Th1-associated cytokines IL-2 and interferon (IFN)-γ to the regulatory cytokine IL-10. Nevertheless, IL-10 T reg cells retained the capacity to produce IFN-γ and concomitantly expressed T-bet, demonstrating their Th1 origin. IL-10 T reg cells suppressed dendritic cell maturation, prevented Th1 cell differentiation, and thereby created a negative feedback loop for Th1-driven immune pathology. These findings demonstrate that Th1 responses can be self-limiting in the context of peripheral tolerance to a self-antigen
    corecore