54 research outputs found

    Geological and geophysical characterization of the Brindisi di Montagna Scalo landslide (Basilicata, Southern Italy)

    Get PDF
    The Brindisi di Montagna Scalo Landslide in Southern Italy is an active complex mass movement, which affects the left slope of the Basento River. In the last few decades, this landslide has been continuously monitored, as it directly threatened some of the most important communication routes in the Basilicata Region. Nevertheless, little progresses have been made to prevent further landslide advancement, and continuous maintenance is required. With the aims of better understanding, the main factors controlling the evolution of this landslide, and suggesting the most appropriate countermeasures, a multidisciplinary study, based on the integration of direct and indirect techniques, was carried out. Direct techniques included multi-temporal geomorphological analysis of the slope, alongside geological and structural field observations. Indirect techniques consisted of electrical resistivity tomography acquisition. The combined analyses of the geological and geophysical data showed that Quaternary tectonic processes played a fundamental role as a predisposing factor, whereas seasonal rainfall, and the perpetual undercutting by erosional processes caused by the Basento River at the toe of the landslide are the main triggering mechanisms. The Brindisi di Montagna Scalo Landslide represents an outstanding case-study, concerning the interaction between a flow-like complex landslide and essential linear infrastructure, such as motorways and railways

    A Prototype System for Time-Lapse Electrical Resistivity Tomographies

    Get PDF
    A prototype system for time-lapse acquisition of 2D electrical resistivity tomography (ERT) and time domain reflectometry (TDR) measurements was installed in a test site affected by a landslide in Basilicata region (southern Italy). The aim of the system is to monitor in real-time the rainwater infiltration into the soil and obtain information about the variation of the water content in the first layers of the subsoil and the possible influence of this variation on landslide activity. A rain gauge placed in the test site gives information on the rainfall intensity and frequency and suggests the acquisition time interval. The installed system and the preliminary results are presented in this paper

    Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain

    Get PDF
    Abstract Recent evidence points to the gut microbiota as a regulator of brain and behavior, although it remains to be determined if gut bacteria play a role in chronic pain. The endocannabinoid system is implicated in inflammation and chronic pain processing at both the gut and central nervous system (CNS) levels. In the present study, we used low Vitamin D dietary intake in mice and evaluated possible changes in gut microbiota, pain processing and endocannabinoid system signaling. Vitamin D deficiency induced a lower microbial diversity characterized by an increase in Firmicutes and a decrease in Verrucomicrobia and Bacteroidetes. Concurrently, vitamin D deficient mice showed tactile allodynia associated with neuronal hyperexcitability and alterations of endocannabinoid system members (endogenous mediators and their receptors) at the spinal cord level. Changes in endocannabinoid (anandamide and 2-arachidonoylglycerol) levels were also observed in the duodenum and colon. Remarkably, the anti-inflammatory anandamide congener, palmitoylethanolamide, counteracted both the pain behaviour and spinal biochemical changes in vitamin D deficient mice, whilst increasing the levels of Akkermansia, Eubacterium and Enterobacteriaceae, as compared with vehicle-treated mice. Finally, induction of spared nerve injury in normal or vitamin D deficient mice was not accompanied by changes in gut microbiota composition. Our data suggest the existence of a link between Vitamin D deficiency – with related changes in gut bacterial composition – and altered nociception, possibly via molecular mechanisms involving the endocannabinoid and related mediator signaling systems

    The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuropathic pain is a chronic disease resulting from dysfunction within the "pain matrix". The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats.</p> <p>Results</p> <p>The effect of <it>N</it>-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the up-regulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively.</p> <p>Conclusion</p> <p>These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.</p

    Discovery of Prostamide F2α and Its Role in Inflammatory Pain and Dorsal Horn Nociceptive Neuron Hyperexcitability

    Get PDF
    It was suggested that endocannabinoids are metabolized by cyclooxygenase (COX)-2 in the spinal cord of rats with kaolin/λ-carrageenan-induced knee inflammation, and that this mechanism contributes to the analgesic effects of COX-2 inhibitors in this experimental model. We report the development of a specific method for the identification of endocannabinoid COX-2 metabolites, its application to measure the levels of these compounds in tissues, and the finding of prostamide F2α (PMF2α) in mice with knee inflammation. Whereas the levels of spinal endocannabinoids were not significantly altered by kaolin/λ-carrageenan-induced knee inflammation, those of the COX-2 metabolite of AEA, PMF2α, were strongly elevated. The formation of PMF2α was reduced by indomethacin (a non-selective COX inhibitor), NS-398 (a selective COX-2 inhibitor) and SC-560 (a selective COX-1 inhibitor). In healthy mice, spinal application of PMF2α increased the firing of nociceptive (NS) neurons, and correspondingly reduced the threshold of paw withdrawal latency (PWL). These effects were attenuated by the PMF2α receptor antagonist AGN211336, but not by the FP receptor antagonist AL8810. Also prostaglandin F2α increased NS neuron firing and reduced the threshold of PWL in healthy mice, and these effects were antagonized by AL8810, and not by AGN211336. In mice with kaolin/λ-carrageenan-induced knee inflammation, AGN211336, but not AL8810, reduced the inflammation-induced NS neuron firing and reduction of PWL. These findings suggest that inflammation-induced, and prostanoid-mediated, enhancement of dorsal horn NS neuron firing stimulates the production of spinal PMF2α, which in turn contributes to further NS neuron firing and pain transmission by activating specific receptors
    corecore