2,047 research outputs found
Built-in reduction of statistical fluctuations of partitioning objects
Our theoretical and numerical investigation of the movement of an object that partitions a microtubule filled with small particles indicates that vibrations warranted by thermal equilibrium are reached only after a time that increases exponentially with the number of particles involved. This points to a basic mechanical process capable of breaching, on accessible time scales, the ultimate ergodic constraints that force randomness on bound microscale and nanoscale systems
Surfaces with surjective endomorphisms of any given degree
We present a complete classification of complex projective surfaces X with nontrivial self-maps (i.e. surjective morphisms f:X→X which are not isomorphisms) of any given degree. The starting point of our classification are results contained in Fujimoto and Nakayama that provide a list of surfaces that admit at least one nontrivial self-map. We then proceed by a case by case analysis that blends geometrical and arithmetical arguments in order to exclude that certain prime numbers appear as degrees of nontrivial self-maps of certain surfaces
Reduced Density-Matrix Functional Theory: correlation and spectroscopy
In this work we explore the performance of approximations to electron
correlation in reduced density-matrix functional theory (RDMFT) and of
approximations to the observables calculated within this theory. Our analysis
focuses on the calculation of total energies, occupation numbers,
removal/addition energies, and spectral functions. We use the exactly solvable
Hubbard molecule at 1/4 and 1/2 filling as test systems. This allows us to
analyze the underlying physics and to elucidate the origin of the observed
trends. For comparison we also report the results of the approximation,
where the self-energy functional is approximated, but no further hypothesis are
made concerning the approximations of the observables. In particular we focus
on the atomic limit, where the two sites of the molecule are pulled apart and
electrons localize on either site with equal probability, unless a small
perturbation is present: this is the regime of strong electron correlation. In
this limit, using the Hubbard molecule at 1/2 filling with or without a
spin-symmetry-broken ground state, allows us to explore how degeneracies and
spin-symmetry breaking are treated in RDMFT. We find that, within the used
approximations, neither in RDMFT nor in the signature of strong
correlation are present in the spin-singlet ground state, whereas both give the
exact result for the spin-symmetry broken case. Moreover we show how the
spectroscopic properties change from one spin structure to the other. Our
findings can be generalized to other situations, which allows us to make
connections to real materials and experiment
Non-covalent interactions in organotin(IV) derivatives of 5,7-ditertbutyl- and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine as recognition motifs in crystalline self- assembly and their in vitro antistaphylococcal activity
Non-covalent interactions are known to play a key role in biological compounds due to their
stabilization of the tertiary and quaternary structure of proteins [1]. Ligands similar to purine rings,
such as triazolo pyrimidine ones, are very versatile in their interactions with metals and can act as
model systems for natural bio-inorganic compounds [2]. A considerable series (twelve novel
compounds are reported) of 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) and 5,7-diphenyl-
1,2,4-triazolo[1,5-a]pyrimidine (dptp) were synthesized and investigated by FT-IR and 119Sn
M\uf6ssbauer in the solid state and by 1H and 13C NMR spectroscopy, in solution [3]. The X-ray
crystal and molecular structures of Et2SnCl2(dbtp)2 and Ph2SnCl2(EtOH)2(dptp)2 were described, in
this latter pyrimidine molecules are not directly bound to the metal center but strictly H-bonded,
through N(3), to the -OH group of the ethanol moieties. The network of hydrogen bonding and
aromatic interactions involving pyrimidine and phenyl
rings in both complexes drives their self-assembly. Noncovalent
interactions involving aromatic rings are key
processes in both chemical and biological recognition,
contributing to overall complex stability and forming
recognition motifs. It is noteworthy that in
Ph2SnCl2(EtOH)2(dptp)2 \u3c0\u2013\u3c0 stacking interactions between
pairs of antiparallel triazolopyrimidine rings mimick basepair
interactions physiologically occurring in DNA (Fig.1).
M\uf6ssbauer spectra suggest for Et2SnCl2(dbtp)2 a
distorted octahedral structure, with C-Sn-C bond angles
lower than 180\ub0. The estimated angle for Et2SnCl2(dbtp)2
is virtually identical to that determined by X-ray diffraction. Ph2SnCl2(EtOH)2(dptp)2 is
characterized by an essentially linear C-Sn-C fragment according to the X-ray all-trans structure.
The compounds were screened for their in vitro antibacterial activity on a group of reference
staphylococcal strains susceptible or resistant to methicillin and against two reference Gramnegative
pathogens [4] . We tested the biological activity of all the specimen against a group of
staphylococcal reference strains (S. aureus ATCC 25923, S. aureus ATCC 29213, methicillin
resistant S. aureus 43866 and S. epidermidis RP62A) along with Gram-negative pathogens (P.
aeruginosa ATCC9027 and E. coli ATCC25922). Ph2SnCl2(EtOH)2(dptp)2 showed good
antibacterial activity with a MIC value of 5 \u3bcg mL-1 against S. aureus ATCC29213 and also
resulted active against methicillin resistant S. epidermidis RP62A
Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks
We report on the transport properties of an array of N about 30
interconnected Nb nanowires, grown by sputtering on robust porous Si
substrates. The analyzed system exhibits a broad resistive transition in zero
magnetic field, H, and highly nonlinear V(I) characteristics as a function of H
which can be both consistently described by quantum tunneling of phase slips.Comment: accepted for publication on Appl. Phys. Let
Speed limit to the Abrikosov lattice in mesoscopic superconductors
We study the instability of the superconducting state in a mesoscopic
geometry for the low pinning material MoGe characterized by a large
Ginzburg-Landau parameter. We observe that in the current driven switching to
the normal state from a nonlinear region of the Abrikosov flux flow, the mean
critical vortex velocity reaches a limiting maximum velocity as a function of
the applied magnetic field. Based on time dependent Ginzburg-Landau simulations
we argue that the observed behavior is due to the high velocity vortex dynamics
confined on a mesoscopic scale. We build up a general phase diagram which
includes all possible dynamic configurations of Abrikosov lattice in a
mesoscopic superconductor.Comment: 7 pages, 6 figure
Anti-CD20 therapy depletes activated myelin-specific CD8+ T cells in multiple sclerosis.
CD8+ T cells are believed to play an important role in multiple sclerosis (MS), yet their role in MS pathogenesis remains poorly defined. Although myelin proteins are considered potential autoantigenic targets, prior studies of myelin-reactive CD8+ T cells in MS have relied on in vitro stimulation, thereby limiting accurate measurement of their ex vivo precursor frequencies and phenotypes. Peptide:MHC I tetramers were used to identify and validate 5 myelin CD8+ T cell epitopes, including 2 newly described determinants in humans. The validated tetramers were used to measure the ex vivo precursor frequencies and phenotypes of myelin-specific CD8+ T cells in the peripheral blood of untreated MS patients and HLA allele-matched healthy controls. In parallel, CD8+ T cell responses against immunodominant influenza epitopes were also measured. There were no differences in ex vivo frequencies of tetramer-positive myelin-specific CD8+ T cells between MS patients and control subjects. An increased proportion of myelin-specific CD8+ T cells in MS patients exhibited a memory phenotype and expressed CD20 compared to control subjects, while there were no phenotypic differences observed among influenza-specific CD8+ T cells. Longitudinal assessments were also measured in a subset of MS patients subsequently treated with anti-CD20 monoclonal antibody therapy. The proportion of memory and CD20+ CD8+ T cells specific for certain myelin but not influenza epitopes was significantly reduced following anti-CD20 treatment. This study, representing a characterization of unmanipulated myelin-reactive CD8+ T cells in MS, indicates these cells may be attractive targets in MS therapy
Screened extended Koopmans' theorem: photoemission at weak and strong correlation
By introducing electron screening in the extended Koopmans' theorem we
correctly describe the band gap opening in weakly as well as strongly
correlated systems. We show this by applying our method to bulk LiH, Si, and
paramagnetic as well as antiferromagnetic NiO. Although incorrect features
remain in the full photoemission spectra, this is a remarkable result for an
ab-initio electronic structure method and it opens the way to a unified
description of photoemission spectra at weak and strong correlation
- …