75 research outputs found

    Nutritional requirements for the production of dithiolopyrrolone antibiotics by Saccharothrix algeriensis NRRL B-24137

    Get PDF
    The amino acid and humic acid requirements of Saccharothrix algeriensis NRRL B-24137 for growth and production of the dithiolopyrrolone antibiotics were studied in a semi-synthetic medium (SSM). Nature and concentration of amino acids and humic acid strongly influenced the growth and dithiolopyrrolone specific production. The highest value of thiolutin (acetyl-pyrrothine) specific production was obtained in the presence of 1 g/l humic acid (336 mg/g DCW), and in the presence of 5mM l-cystine (309 mg/g DCW) as compared to 19 mg/g DCW obtained with the control. Furthermore, thiolutin production was increased about six-fold, four-fold and three-fold in the presence of l-proline, l-glutamic acid and dl-histidine, respectively. In contrast,the production of thiolutin was reduced by addition of other amino acids such as l-glutamine, dl-ethionine, l-methionine and l-arginine. The highest value of isobutyryl-pyrrothine production was obtained in the presence of 2,6-diaminopimelic acid and l-lysine (7.8 and 1.0 mg/g DCW, respectively). However, the highest value of butanoyl-pyrrothine production was obtained in the presence of humic acid (6.6 mg/g DCW), followed by l-cysteine and l-proline (3.6 and 3.2 mg/g DCW, respectively). In addition, the maximum specific production of senecioyl-pyrrothine (29 mg/g DCW) and tigloyl-pyrrothine (21 mg/g DCW) was obtained in the presence of humic acid. We found that, except for isobutyryl-pyrrothine, production of all dithiolopyrrolones was favoured by addition of l-proline. The maximum specific production was obtained with l-proline at concentrations of 2.50mM for thiolutin (133mg/gDCW),1.25mMfor senecioyl-pyrrothine, tigloyl-pyrrothine and butanoyl-pyrrothine production (29, 23 and 3.9 mg/gDCW, respectively). Production of all dithiolopyrrolones strongly decreased as the l-methionine or dl-ethionine concentration was increased in the culture medium

    Taxonomic study and partial characterization of antimicrobial compounds from a moderately halophilic strain of the genus Actinoalloteichus

    Get PDF
    A moderately halophilic actinomycete strain designated AH97 was isolated from a saline Saharan soil, and selected for its antimicrobial activities against bacteria and fungi. The AH97 strain was identified by morphological, chemotaxonomic and phylogenetic analyses to the genus Actinoalloteichus. Analysis of the 16S rDNA sequence of strain AH97 showed a similarity level ranging between 95.8% and 98.4% within Actinoalloteichus species, with A. hymeniacidonis the most closely related. The comparison of the physiological characteristics of AH97 with those of known species of Actinoalloteichus showed significant differences. Strain AH97 showed an antibacterial and antifungal activity against broad spectrum of microorganisms known to be human and plant pathogens. The bioactive compounds were extracted from the filtrate culture with n-butanol and purified using thin layer chromatography and high pressure liquid chromatography procedures. Two active products were isolated, one hydrophilic fraction (F1) and another hydrophobic (F2). Ultraviolet-visible, infrared, mass and 1H and 13C nuclear magnetic resonance spectroscopy studies suggested that these molecules were the dioctyl phthalate (F2) and an aminoglycosidic compound (F1)

    Identification of a new strain of Actinomadura isolated from Saharan soil and partial characterization of its antifungal compounds

    Get PDF
    One promising strain Actinomadura sp. AC170, isolated from Algerian Saharan soil, with strong antifungal activity against pathogenic and toxinogenic fungi, was selected for further studies. The 16S rRNA results showed a distinct phylogenetic lineage from the other species within the Actinomadura genus. The production of antibiotic substances was investigated using GYEA solid medium. The butanolic extract contained four bioactive spots detected on thin layer chromatography plates. Among these antibiotics, a complex called 170A, which showed the more interesting antifungal activity, was selected and purified by reverse-phase HPLC. This complex is composed of four compounds. Ultraviolet-visible, infrared, mass and H nuclear magnetic resonance spectroscopy studies showed that these molecules contain an aromatic ring substituted by aliphatic chains. These compounds differ from the known antibiotics produced by Actinomadura species

    Aspergillus section Flavi and aflatoxins in Algerian wheat and derived products

    Get PDF
    Wheat and its derivatives are a very important staple food for North African populations. The aim of this study was to analyze populations of Aspergillus section Flavi from local wheat based on aflatoxins (AFs),cyclopiazonic acid (CPA) and sclerotia production, and also to evaluate AFs-contaminated wheat collected from two different climatic regions in Algeria. A total of 108 samples of wheat were collected during the following phases: pre-harvest, storage in silos and after processing. The results revealed that among the Aspergillus species isolated, those belonging to section Flavi were predominant. Of the 150 strains of Aspergillus section Flavi isolated, 144 were identified as Aspergillus flavus and 6 as Aspergillus tamarii. We showed that 72% and 10% of the A. flavus strains produced AFs and CPA, respectively. Among the 150 strains tested, 60 produced amounts of AFB1 ranging from 12.1 to 234.6 lg/g of CYA medium. Also, we showed that most strains produced large sclerotia. AFB1was detected by HPLC in 56.6% of the wheat samples and derived products (flour, semolina and bran) with contamination levels ranging from 0.13 to 37.42 lg/kg

    Activité antimicrobienne de Streptomyces sp. PAL111 d'origine saharienne contre divers microorganismes cliniques et toxinogènes résistants aux antibiotiques

    Get PDF
    Objectif. - Étude de la taxonomie et de l'activité de l'isolat d'actinomycète PAL111 contre divers microorganismes pathogènes et toxinogènes pour l'homme et multirésistants aux antibiotiques. Matériel et méthodes. - L'étude taxonomique de l'isolat PAL111 est réalisée sur la base de critères phénotypiques et moléculaires. Les tests contre les microorganismes pathogènes sont effectués sur les milieux ISP-2 et Bennett. Les cinétiques de production de l'antibiotique sont réalisées sur milieu ISP-2. L'antibiotique est mis en évidence par bioautographie et par révélation chimique, puis purifié par chromatographie sur couche épaisse de gel de silice et sur colonne de Séphadex LH20. Les concentrations minimales inhibitrices (CMI) sont déterminées contre les germes pathogènes. Résultats. - Sur la base des caractéristiques phénotypiques et moléculaires, l'isolat PAL111 est rapproché de l'espèce Streptomyces ambofaciens. Il présente une forte activité contre Candida albicans, les champignons filamenteux et les bactéries à Gram positif et à Gram négatif. L'activité optimales est obtenue en fin de phase exponentielle de croissance et début de phase de déclin. Les bioautographies ont montré la présence d'un antibiotique à activité antibactérienne et antifongique. Cet antibiotique est hydrophile et de nature osidique et aminé. Les CMI obtenues se situent entre 2 et 20 μg/mL pour les levures, 10 et 50 μg/Ml pour les champignons filamenteux, 2 et 10 μg/mL pour les bactéries à Gram positif et 20 et 75 μg/mL pour les bactéries à Gram négatif. Conclusion: L'activité intéressante de PAL111 contre les germes pathogènes et la nature hydrophile de l'antibiotique qu'il sécrète incite à la poursuite des études sur cette molécule bioactive

    Actinopolyspora saharensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil of Algeria

    Get PDF
    A novel halophilic actinomycete, strain H32T,was isolated froma Saharan soil sample collected in El-Oued province, south Algeria. The isolate was characterized by means of polyphasic taxonomy. Optimal growth was determined to occur at 28–32°C, pH 6.0–7.0 and in the presence of 15–25 %(w/v) NaCl. The strain was observed to produce abundant aerial mycelium, which formed long chains of rod-shaped spores at maturity, and fragmented substrate mycelium. The cell wall was determined to contain meso-diaminopimelic acid and the characteristic whole-cell sugars were arabinose and galactose. The predominant menaquinoneswere found to beMK-10(H4) andMK-9(H4). The predominant cellular fatty acids were determined to be anteiso C17:0, iso-C15:0 and iso-C16:0. The diagnostic phospholipid detected was phosphatidylcholine. Phylogenetic analyses based on the 16S rRNA gene sequence showed that this strain formed a distinct phyletic line within the radiation of the genus Actinopolyspora. The 16S rRNAgene sequence similarity indicated that strain H32T was most closely related to ‘Actinopolyspora algeriensis’ DSM 45476T (98.8 %) and Actinopolyspora halophila DSM 43834T (98.5 %). Furthermore, the result of DNA–DNA hybridization between strain H32T and the type strains ‘A. algeriensis’ DSM45476T, A. halophila DSM 43834T and Actinopolyspora mortivallis DSM 44261T demonstrated that this isolate represents a different genomic species in the genus Actinopolyspora. Moreover, the physiological and biochemical data allowed the differentiation of strain H32T from its closest phylogenetic neighbours. Therefore, it is proposed that strain H32T represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora saharensis sp. nov. is proposed. The type strain is H32T (=DSM 45459T=CCUG 62966T)

    In vitrointeraction of actinomycetes isolates withAspergillus flavus: impact on aflatoxins B1 and B2 production

    Get PDF
    This work aimed to study the interaction between Actinomycetal isolates and Aspergillus flavus to promote mutual antagonism in contact. Thirty‐seven soilborn Streptomyces spp. isolates were chosen as potential candidates. After a 10‐day in vitro co‐incubation period, 27 isolates respond to the criteria, that is, mutual antagonism in contact. Further aflatoxins B1 and B2 analysis revealed that those 27 isolates reduced aflatoxin B1 residual concentration from 38·6 to 4·4%, depending on the isolate. We selected 12 isolates and tested their capacity to reduce AFB1 in pure culture to start identifying the mechanisms involved in its reduction. AFB1 was reduced by eight isolates. The remaining AFB1 concentration varied between 82·2 and 15·6%. These findings led us to suggest that these eight isolates could be used as biocontrol agents against AFB1 and B2 with low risk of impacting the natural microbial equilibrium

    Development of formulations based on Streptomyces rochei strain PTL2 spores for biocontrol of Rhizoctonia solani damping-off of tomato seedlings

    Get PDF
    Rhizoctonia solani is one of the most problematic soil-borne pathogenic fungi for several crop cultures worldwide. This study highlights the effectiveness of high-antagonistic Streptomyces rochei strain PTL2, isolated from root tissues of Panicum turgidum, in controlling the R. solani damping-off and growth promotion of tomato (cv. Marmande) seedlings. The isolate PTL2 was characterised for in vitro biocontrol and plant growth-promoting traits. It exhibited remarkable positive results in all trials, including production of hydrogen cyanide, siderophores, 1-aminocyclopropane-1-carboxylate deaminase and phytohormones, chitinolytic activity and inorganic phosphate solubilisation. PTL2 spores were formulated as wettable talcum powder, sodium alginate pellets and sodium alginate-clay pellets. Their abilities in the biocontrol of R. solani and plant growth promotion were investigated in autoclaved and non-autoclaved soils. Talcum powder and sodium alginate pellets significantly reduced the damping-off severity index compared to a positive control. The talcum powder exhibited the highest protective activity, reducing the disease incidence from 89.3% to 14.1%, whereas chemical seed treatment with Thiram® provided a disease incidence of 16.7%. Furthermore, the talc-based powder formulation resulted in greatest increases in the root length, shoot length and dry weight of seedlings. The interesting biocontrol potential and growth enhancement of tomato seedlings open up promising perspectives for the possible application of talcum powder formulation based on PTL2 spores in crop improvement

    Taxonomy of mycelial actinobacteria isolated from Saharan soils and their efficiency to reduce aflatoxin B1 content in a solid-based medium

    Get PDF
    Aflatoxin B1 (AFB1) is a carcinogenic compound produced by filamentous fungi. In order to reduce AFB1 occurrence in foodstuffs, 13 strains of mycelial actinobacteria were tested in vitro for the efficacy to reduce AFB1 content; all were isolated from the Saharan soils of Algeria. Firstly, morphological study and molecular analysis, based on the 16S rRNA gene, indicated that these strains belong to Actinomadura, Nocardiopsis, Nonomuraea, Saccharothrix and Streptomyces genera. Secondly, each strain’s efficacy to reduce pure AFB1 content was studied in ISP2-medium. After a 4-day incubation at 30°C on AFB1-supplemented medium (5 ppm of AFB1), AFB1 was extracted and quantified. AFB1 content was reduced by all strains (42.9–97.6%). The three most efficient reducers (94.9–97.6%) were two strains belonging to the genus Streptomyces and one to the genus Saccharothrix. Among the latter, strains ACD6 and ABH19 showed no adsorption mechanism involved, suggesting a potential degradation mechanism. These findings led us to suggest that these actinobacterial strains could be used as decontamination treatments for the reduction of AFB1 content

    Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedlings

    Get PDF
    Sixteen endophytic actinobacteria isolated from roots of native plants were evaluated for their antagonistic potential against soil-borne phytopathogenic fungi. Among them, three strong antagonistic isolates were selected and characterised for in vitro plant-growth-promoting and biocontrol traits, including production of hydrogen cyanide, indole-3-acetic acid and siderophores, chitinase and β-1,3-glucanase activities, and inorganic phosphate solubilisation. In all trials, the strain Streptomyces sp. SNL2 revealed promising features. The selected actinobacteria were investigated for the biocontrol of Fusarium oxysporum f. sp. radicis lycopersici and for growth promotion of tomato (Solanum lycopersicum L. cv. Aïcha) seedlings in autoclaved and non-autoclaved soils. All seed-bacterisation treatments significantly reduced the root rot incidence compared to a positive control (with infested soil), and the isolate SNL2 exhibiting the highest protective activity. It reduced the disease incidence from 88.5% to 13.2%, whereas chemical seed treatment with Thiram® provided 14.6% disease incidence. Furthermore, isolate SNL2 resulted in significant increases in the dry weight, shoot and root length of seedlings. 16S rDNA sequence analysis showed that isolate SNL2 was related to Streptomyces asterosporus NRRL B-24328T (99.52% of similarity). Its interesting biocontrol potential and growth enhancement of tomato seedlings open up attractive uses of the strain SNL2 in crop improvement
    corecore