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Abstract Aflatoxin B1 (AFB1) is a carcinogenic com-
pound produced by filamentous fungi. In order to re-
duce AFB1 occurrence in foodstuffs, 13 strains of my-
celial actinobacteria were tested in vitro for the efficacy
to reduce AFB1 content; all were isolated from the
Saharan soils of Algeria. Firstly, morphological study
and molecular analysis, based on the 16S rRNA gene,
indicated that these strains belong to Actinomadura,
Nocardiopsis , Nonomuraea , Saccharothr ix and
Streptomyces genera. Secondly, each strain’s efficacy to
reduce pure AFB1 content was studied in ISP2-medium.
Af te r a 4 -day incuba t ion a t 30°C on AFB1-
supplemented medium (5 ppm of AFB1), AFB1 was
extracted and quantified. AFB1 content was reduced
by all strains (42.9–97.6%). The three most efficient
reducers (94.9–97.6%) were two strains belonging to
the genus Streptomyces and one to the genus
Saccharothrix. Among the latter, strains ACD6 and
ABH19 showed no adsorption mechanism involved,

suggesting a potential degradation mechanism. These
findings led us to suggest that these actinobacterial
strains could be used as decontamination treatments for
the reduction of AFB1 content.

Keywords Mycelial actinobacteria . Taxonomy .Molecular
identification . Aflatoxin B1 decontamination

Introduction

Aflatoxin B1 (AFB1) is a secondary metabolite pro-
duced mainly by two closely related fungi, Aspergillus
flavus and Aspergillus parasiticus (Ellis et al. 1991).
This mycotoxin is carcinogenic, mutagenic, hepatotoxic
and immunosuppressive (Guengerich et al. 1996;
Hussein and Brasel 2001), and its presence is reported
worldwide in several foods and feedstuffs. Recently,
AFB1 was detected in wheat grains in India (Toteja
et al. 2006), maize in Italy and Iran (Giorni et al.
2007; Karami-Osboo et al. 2012) and dried fruit in
Pakistan (Ghosia and Arshad 2011). Thus, numerous
physical and chemical methods for AFB1 decontamina-
tion have been investigated, including thermal inactiva-
tion, gamma irradiation, UV irradiation (Ghanem et al.
2008; Herzallah et al. 2008; Ashik 2015; Jalili 2016)
and ammoniation, acid treatment, ozonation and chlorine
(Bozoğlu 2009; Ashik 2015; Jalili 2016), respectively.
Unfortunately, these methods have their drawbacks, in-
cluding the high stability of AFB1, potential toxic res-
idues and treatment costs.

Biological treatments are promising approaches against
AFB1 accumulation with a low risk of residual toxicity or mod-
ification of food properties. Several bacteria reviewed in
Verheecke et al. 2016, non-mycelial bacteria [e.g.: Bacillus
subtilis, Pseudomonas solanacearum (Nesci et al. 2005)], yeast
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[e.g.:Candida albicans, Pichia anomala (Hua et al. 1999)], non-
toxigenic A. flavus (Ehrlich 2014) and Streptomyces strains
(Verheecke et al. 2014) revealed promising results as biological
treatment against AFB1 accumulation. However, non-
Streptomyces actinobacteria have never been tested for the bio-
logical treatment of AFB1 contamination.

To selectively isolate rare mycelial actinobacteria, several
methods have been used, including dry heating of soil samples
(Zakharova et al. 2003), freezing of marine sediment samples
(Bredholdt et al. 2007), phenolic treatment (Istianto et al.
2012) and selection media such as chitin-vitamin medium
(Hayakawa and Nonomura 1987), which contains chitin as
the sole source of carbon and nitrogen. Actinobacteria degrade
this polymer better than other microorganisms. Moreover, the
addition of water soluble B vitamins to this medium promotes
growth of rare actinobacterial strains, which are generally
auxotrophic. This medium can be used successfully used for
the isolation of new taxa of rare mycelial actinobacteria from
Algerian Saharan soils (Saker et al. 2014; Bouras et al. 2015;
Meklat et al. 2015).

Algerian Saharan soils in arid climates are attractive sources
of several non-Streptomyces genera, such as Actinomadura,
Act inopolyspora , Amycola tops is , Nocardiops is ,
Saccharopolyspora and Saccharothrix (Sabaou et al. 1998). In
these extreme habitats, these microorganisms have already been
identified as a source of bioactive compounds (Merrouche et al.
2010; Aouiche et al. 2012; Boubetra et al. 2013). These non-
Streptomyces genera could also be promising biological treat-
ments for AFB1 decontamination.

The present study aimed to isolate and identify mycelial
actinobacteria, and to detect their ability to reduce AFB1 con-
tent in a solid-based medium.

Materials and methods

Isolation of actinobacterial strains

Mycelial actinobacteria strains were isolated from five
soil samples collected from three Algerian Saharan re-
gions, Adrar (latitude, 27°53′N; longitude, 0°17′), Béni-
Abbès (latitude, 30°7 ′N, longitude, 2°10 ′W) and
Tamanrasset (latitude, 22°47′N, longitude, 5°31′E). To
promote the growth of prevalent and rare mycelial
actinobacteria, the isolation was carried out on chitin-
vitamin agar medium using the standard dilution plate
method, (Hayakawa and Nonomura 1987). The medium
was supplemented with 80 mg/L cycloheximide to sup-
press the growth of fungi. After 21 days of incubation
at 30°C, the actinobacterial strains were picked, purified
and preserved on International Streptomyces Project
(ISP) 2 medium (Shirling and Gottlieb 1966) at 4°C.

Taxonomic study of actinobacterial strains

Morphological study

The morphological and cultural characteristics of
actinobacterial strains were determined on ISP media:
yeast extract-malt extract agar (ISP2), oatmeal agar
(ISP3) and inorganic salts-starch agar (ISP4) (Shirling
and Gottlieb 1966), and also on the Bennett medium
(Waksman 1961). After incubation at 30°C for 14 days,
colors of aerial mycelia, substrate mycelia and diffusible
pigments were determined using the ISCC-NBS color
name chart (Kelly and Judd 1976). The micromorphol-
ogy and sporulation of strains were examined by the
naked eye and by light microscope (Motic, B1Series,
Hong Kong).

Molecular study for actinobacteria identification

Actinobacterial colonies were removed aseptically from
ISP2 medium and transferred to 1.5 mL sterile
Eppendorf tubes. Genomic DNA was extracted accord-
ing to the method of Liu et al. (2000). PCR amplifica-
tion of the 16S rRNA gene sequence was performed
us ing two un ive r s a l p r ime r s : 27 f (5 ′ -AGAG
TTTGATCCTGGCTCAG-3 ′) and 1492r (5 ′-GGTT
ACCTTGTTACGACTT-3′). The 16S rRNA gene was
PCR-amplified in 50 μl reaction mixture, using 25–
50 ng genomic DNA, 0.5 μM of each primer, 1×
PCR buffer, 10 μM deoxynucleoside triphosphate mix-
ture and 0.4 U Taq DNA polymerase. The amplification
was performed as follows, initial DNA denaturation at
98°C for 4 min, 30 cycles of: denaturation at 94°C for
1 min, primers annealing at 52°C for 1 min and exten-
sion at 72°C for 2 min, and a final elongation at 72°C
for 10 min before cooling at 4°C. The PCR products
were analyzed by agarose gel electrophoresis, and
shipped to Beckman Coulter Genomics (Bishop’s
Stortford, UK) for purification and sequencing.

The sequences obtained were compared with se-
quences in EzTaxon-e server (ht tp: / /eztaxon-e.
ezbiocloud.net/; Kim et al. 2012). Phylogenetic
analyses were conducted using MEGA version 5
(Tamura et al. 2011). 16S rRNA gene sequences of
the 13 strains were aligned against neighboring nu-
cleotide sequences using CLUSTAL W (with default
parameters) (Thompson et al. 1994). A phylogenetic
tree was constructed using neighbor-joining (Saitou
and Nei 1987) with the Jukes and Cantor (1969)
model. To evaluate the reliability of the tree topolo-
gy, a bootstrap analysis (Felsenstein 1985) was
performed.

http://eztaxon-e.ezbiocloud.net/
http://eztaxon-e.ezbiocloud.net/


Effect of actinobacterial strains on pure aflatoxin B1

Culture media

Pure AFB1 (5 mg; Sigma-Aldrich, Saint-Quentin-Fallavier,
France) was solubilized in 5 mL methanol. The solution was
added to 1 L ISP2 medium to obtain a final concentration of
5 ppm (Verheecke et al. 2014). The following two controls
were included: (1) sterile ISP2 solid medium, (2) sterile ISP2
solid medium supplemented with 5 ml/L methanol. Spores of
actinobacterial strains were inoculated on the medium by
completely covering the Petri dish surface, and the plates were
incubated at 30°C for 96 h. The experiment was performed
twice in triplicate.

Extraction and quantification of residual AFB1

AFB1 was extracted as described by Verheecke et al. (2014).
A volume of 10 μL of each sample was injected into the
HPLC system (Ultimate 3000, Dionex, Voisins Le
Bretonneux, France) coupled with a coring cell (Diagnostix,
Aachen, Germany). A reverse phase C18 column (250 × 4.6
mm; 3 μm, Kinetex, Phenomenex) was used. The mobile
phase consisted of acetonitrile: methanol: water (20: 20: 60,
v/v/v) with 119 mg/L potassium bromide and 100 μL/L 65%
nitric acid. The total run time was 35 min at a flow rate of 0.8
mL/min at 25°C. The AFB1 absorbance was measured by a
fluorescence detector (Ultimate 3000, RS Fluorescence
Detector, Dionex) at an excitation wavelength λ = 362 nm
and an emission wavelength λ = 440 nm. Areas under AFB1
absorbance peak were used to estimate the AFB1 residual
content in medium (rcm). The analyses were carried out using
Chromeleon software thanks to standards of AFB1. The re-
covery ratio was 50%.

AFB1 adsorption tests

The adsorption tests were performed as described by
Verheecke et al. (2015). Briefly, strains ACD6 and ABH19
were placed in a glass vial at a concentration of 106 spores/mL
containing an AFB1 concentration of 1 μg/mL. After 1 min or
60 min incubation at 30°C, the supernatant was filtered and
transferred to a vial. The filter was rinsed twice: once with
sterile water (1 mL) and once with methanol, and the rinse
liquids were also quantified by HPLC.

Statistical analysis

All the data are presented graphically as mean ± standard
deviation (n = 6). Non parametric statistical analysis was per-
formed using R (version 3.2.2); the package ‘nparcomp’ was
used and the contrast method was Tukey with a confidence
level of 95% and a logit transformation.

Results

Strain isolation

The mycelial actinobacteria strains from Saharan soils were
isolated using chitin-vitamin agar medium. After 3 weeks of
incubation at 30°C, 13 colonies presenting micromorpholog-
ical characteristics of actinobacteria were picked out and
purified.

Taxonomic characterization of actinobacterial strains

Morphological and cultural characteristics

According the morphological tests (especially micromorpho-
logical characteristics), the 13 actinobacteria strains were clas-
sified into three groups.

The first group includes seven strains: ABH1, ABH2,
ABH5, ABH9, ABH11, ABH16 and ABH25. Their aerial
mycelium is white, yellowish to pale brown, with the excep-
tion of ABH1 (yellowish pink) and ABH5 (yellowish orange).
Their substrate mycelium is yellowish to pale brown except
for ABH1 (pink to orange-pink). Each strain formed a well-
branched substrate mycelia with little fragmentation on agar
media. Aerial mycelium is well developed, fragmented anar-
chically, and is often with zigzag into long chains of non-
motile and elongated spores of different sizes. These charac-
teristics belong to Nocardiopsis and/or Saccharothrix genera
(Hozzein and Trujillo 2012; Labeda 2012).

The second group contains four strains: ABH21, ACD2,
ACD7 and ACD12. The aerial mycelium is white for ABH21,
ACD2 and ACD12, and is yellowish/pink for ACD7. The
substrate mycelium is orange to brownish orange for
ABH21, and white to pale beige for ACD2, ACD12 and
ACD7. These four strains were found to form a sterile sub-
strate mycelium. However, the aerial mycelium was found to
bore short chains of spores on short sporophores; these chains
are straight, flexuous to hooked (ABH21, ACD2 and ACD7)
or irregular spirals (ACD12). All these characteristic belong to
Actinomadura and/or Nonomuraea genera (Trujillo and
Goodfellow 2012; Labeda 2012).

The third group contains two strains, ABH19 and ACD6.
Their aerial mycelium is pinkish white to yellowish pink and
the substrate mycelium is light beige. These strains have both
a non-fragmented substrate mycelium and a well-developed
aerial mycelium. The latter has long chains of spores that are
irregular spirals and carried by long sporophores. These are
characteristic of Streptomyces genus (Kämpfer 2012a, 2012b).

16S rRNA gene sequencing and phylogenetic analyses

The morphology of the strains was confirmed by the
phylogenetic study (Fig. 1). Indeed, the strains of group



1 belong to Nocardiopsis and Saccharothrix genera,
those of group 2 to Actinomadura and Nonomuraea
genera, and those of group 3 to Streptomyces genus.

The strains ABH1, ABH2 and ABH11 were related
to Nocardiopsis sinuspersici, with a similarity of 99.4,
98.8 and 99.0%, respectively. Strain ABH5 was similar
by 100% to Nocardiopsis halotolerans. Strain ABH9 is
closely related to Nocardiopsis arvandica (99.4%),
while strain ABH16 likely belongs to Nocardiopsis
dassonvillei subsp. dassonvillei (99.8%). Moreover,
strain ABH25 was related to Saccharothrix carnea with
a similarity of 99.7%.

Strains from the second morphological group were
related to the Actinomadura and Nonomuraea genera.
Strain ABH21 exhibited 100% sequence similarity with
Nonomuraea dietziae. Strains ACD2, ACD7 and
ACD12 were most closely related to Actinomadura
meyerae (99.1%), Actinomadura apis (99.5%) and
Actinomadura sputi (98.3%).

Strains from the third morphological group (ABH19 and
ACD6) showed both 99.6 and 99.7% sequence similarities to
Streptomyces smyrnaeus.

A GenBank accession number was assigned to each of the
16S rRNA gene sequences from actinobacterial strains
(Fig. 1).

Reduction of AFB1 content by actinobacteria

Thirteen actinobacterial strains were inoculated in an AFB1-
supplemented medium (5 ppm) and incubated for 4 days at
30°C. All strains showed no macroscopic difference between
the two control media (sterile ISP2 medium and sterile ISP2
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Fig. 1 Neighbor-joining
phylogenetic tree based on almost
complete 16S rRNA gene
sequences showing taxonomic
position of actinobacterial isolates
of Saharan soils. Bootstrap values
(>50%) based on 1000
resamplings are shown at branch
nodes. The numbers between
brackets are the accession
numbers. Bar 0.01 substitutions
per site

Table 1 Impact of
actinobacterial strains on
AFB1 content in a solid
medium. Data with the
same letter are not
significantly different (P
< 0.05). rcm Residual
content in the medium

Strain AFB1 (rcm in %)

Control 100.00 ± 5.59 a

ACD12 57.03 ± 7.68 b

ABH5 53.98 ± 7.07 b,c

ACD2 53.60 ± 8.44 b,c

ABH11 44.93 ± 7.96 c

ABH9 41.41 ± 3.6 c,d

ABH2 36.60 ± 5.18 c,d

ABH21 35.60 ± 6.74 c,d

ABH1 34.93 ± 3.85 d

ACD7 33.73 ± 5.96 c,d

ABH16 27.37 ± 7.02 d

ABH25 5.10 ± 0.67 e

ACD6 4.53 ± 0.92 e,f

ABH19 2.40 ± 1.00 f



medium supplemented with methanol). Supplementation of
AFB1 led to an inhibition of aerial mycelium development
in two strains, ABH16 and ABH21.

The final AFB1 content in the medium was analyzed for
each strain. HPLC results are shown in Table 1. Strains
ACD12, ABH5 and ACD2 moderately reduced the AFB1
content (rcm between 57.03% and 53.60%). Strains ABH11,
ABH9, ABH2, ABH21, ABH1, ACD7 and ABH16 showed a
more significant reduction in the AFB1 content (rcm between
44.93% and 27.37%). Finally, strains ABH25, ACD6 and
ABH19 were extremely efficient in the reduction of AFB1
content (rcm between 5.10 and 2.40%), and revealed a peak
emergence in their HPLC profile (Fig. S1).Moreover, ABH19
and ACD6 strains were further tested for adsorption. For both
strains, the results showed no significant AFB1-adsorption in
comparison to the control.

Discussion

The 13 strains of mycelial actinobacteria isolated in this work
were first studied morphologically. According to the micromor-
phological characteristics, the 13 actinobacterial strains belong to
Nocardiopsis (strains ABH1, ABH2, ABH5, ABH9, ABH11
and ABH16) (Meyer 1976), Saccharothrix (strain ABH25)
(Labeda et al. 1984), Actinomadura (strains ACD2, ACD7 and
ACD12) (Lechevalier and Lechevalier 1970), Nonomuraea
(strain ABH21) (Zhang et al. 1998) and Streptomyces (strains
ABH19 and ACD6) genera (Holt et al. 1994).

The most closely related species were determined by mo-
lecular study based on the 16S rRNA gene. The results ob-
tained showed that some strains may be new species. Indeed,
ACD12 showed a similarity value under 98.65%, the thresh-
old to new species proposed by Kim et al. (2014). While some
strains, such as ABH5, ABH16, ABH25 and ABH21, have
very high percentages of similarity with some species of
Nocardiopsis, Nonomuraea and Saccharothrix (99.7 to
100%), other strains (in addition to ACD12), such as ABH2,
ABH11, ABH9, ABH1 and ACD2, have relatively low per-
centages of similarity with species of Nocardiopsis and
Actinomadura (98.8 to 99.4%). High 16S rRNA gene similar-
ity values were found between representatives of validly de-
scribed Nocardiopsis and Actinomadura species, such as the
type strains of Nocardiopsis valliformis and N. exhalans
(99.9%) (Yang et al. 2008), N. sinuspersici and N. arvandica
(99.9%) (Hamedi et al . 2011), N. halophila and
N. baichengensis (99.9%) (Li et al. 2006), N. litoralis and
N. kunsanensis (99.6%) (Chun et al. 2000), N. metallicus
and N. exhalans (99.4%) (Schippers et al. 2002),
Actinomadura kijaniata and A. namibiensis (99.2%) (Wink
et al. 2003) and A. coerulea and A. verrucosospora (99.2%)
(Preobrazhenskaya et al. 1975). This strongly suggests the
presence of several new species of Nocardiopsis and

Actinomadura, especially for strains ACD12, ABH2 and
ABH11 (similarity below or equal to 99.0%), but also for
ABH1, ABH9 and ACD7 (similarity between 99.1 and
99.4%).

In our study, AFB1 inhibited aerial mycelium in strains
ABH16 and ABH21. The same observation was reported by
Reiss (1971) on fungal strains exposed to AFB1 and other
aflatoxins. Verheecke et al. (2014) observed a lack of pigmen-
tation in Streptomyces strains in the presence of AFB1.

The 13 actinobacterial strains tested strongly reduced the
AFB1 rcm in the medium (rcm between 57.03 and 2.4%).
Two strains of Streptomyces (ABH19 and ACD6) and a strain
of Saccharothrix (ABH25) showed efficient reduction in
AFB1content (rcm between 5.10 and 2.40%), with emergence
of a new peak in their chromatograms. This new peak was not
detected in the presence of the other ten actinobacterial strains
(related to Actinomadura, Nocardiopsis and Nonomuraea
genera) and in controls (methanol extraction of strains grown
in the absence of AFB1). The ability of Streptomyces strains to
reduce AFB1 contamination has been reported previously
(Zucchi et al. 2008; Verheecke et al. 2014; Harkai et al.
2016). Tests have shown that AFB1 reduction by
Streptomyces is not linked to adsorption mechanisms
(Verheecke et al. 2015). In the present work, we also report
no adsorption by the two Streptomyces strains, ACD6 and
ABH19. This is the first time that a strain in the genus
Saccharothrix has been shown to reduce AFB1. The new
peaks could represent side-products generated from potential
degradation of AFB1 or a metabolite produced by the
actinobacterial strains in the presence of AFB1 (Wang et al.
2011; Eshelli et al. 2015).
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