14 research outputs found

    Full genome sequence analysis of Group B human rotaviruses

    Get PDF
    Rotavirus is a major causative pathogen of severe diarrhea in humans and animals. On the basis of VP6 antigen, Rotaviruses are classified into seven groups (A-G), among which only groups A-C rotaviruses cause infection in humans. Group B rotavirus (GBR) was first detected in China in 1982 as a cause of adult diarrheal outbreaks. Although the detection of GBR had been limited in China, GBR has been found in India since 1998, in Bangladesh since 2000, and in Myanmar in 2007. Because of limited data, genetic characteristics of GBR have not been well known so far. Methods: GBRs detected recently in India (IDH-084 in 2007, IC-008 in 2008), Bangladesh (Bang117 in 2003), and Myanmar (MMR-B1 in 2007) were analyzed genetically. Full genome sequences of these strains were determined by RT-PCR and direct sequencing methods. Sequence data was analyzed phylogenetically by MEGA4 program with those of GBRs reported previously. Results: Sequences of all genes of GBRs, including those of animals, were classified into three clusters, i.e., Chinese lineage, India-Bangladeshi-Myanmar lineage, and animal (bovine and murine) lineages. Each strain showed high sequence identity among the same lineage (e.g.,95.6-100% among India-Bangladeshi-Myanmar lineage). The evolutionary rate of all segment genes of GBRs was estimated to be 1.89-2.05310-3 nucleotide substitutions per site per year, using the synonymous substitutions between CAL-1(1998 in India) and IDH-084, CAL-1 and IC-008, and Bang373(2000 in Bangladesh) and Bang117. Conclusion: Full genome sequences of recent group B human rotaviruses were determined and revealed the presence of two major lineages in human GBRs by phylogenetic analysis. Compared to the strains detected in different years, the substitution rate was estimated for the first time for all the gene segments. It was similar to those from partial sequence data reported previously and was comparable to the rate of other rapidly evolving RNA viruses. Further accumulation of genetic data is needed for resolution of ecological features of group B rotaviruses

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Predominance of Mycobacterium tuberculosis EAI and Beijing Lineages in Yangon, Myanmar ▿

    No full text
    Isolates of the Mycobacterium tuberculosis Beijing lineage are associated with high rates of transmission, hypervirulence and drug resistance. The Beijing lineage has been shown to dominate the tuberculosis (TB) epidemic in East Asia; however, the diversity and frequency of M. tuberculosis genotypes from Myanmar are unknown. We present the first comprehensive study describing the M. tuberculosis isolates circulating in Yangon, Myanmar. Thus, 310 isolates from pulmonary TB patients from Yangon, Myanmar, were genotyped by spoligotyping and IS6110-based restriction fragment length polymorphism analysis (IS6110 RFLP). The most frequent lineages observed were the East African-Indian (EAI; 48.4%; n = 150) and Beijing (31.9%; n = 99) lineages. Isolates belonging to the most frequent shared types (STs), ST1 (n = 98; Beijing), ST292 (n = 28; EAI), and ST89 (n = 11; EAI), had ≥75% similarity in their IS6110 patterns. Five of 11 Beijing isolates comprising five clusters with identical IS6110 RFLP patterns could be discriminated by mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) analysis. Of the 150 EAI isolates, 40 isolates (26.7%) had only one IS6110 copy, and 17 of these isolates could be discriminated by MIRU-VNTR analysis. The findings from this study suggest that although there is a predominance of the ancient EAI lineage in Yangon, the TB epidemic in Yangon is driven by clonal expansion of the ST1 genotype. The Beijing lineage isolates (21.4%) were more likely (P = 0.009) than EAI lineage isolates to be multidrug resistant (MDR) (1.3%; odds ratio, 3.2, adjusted for the patients' history of exposure to anti-TB drugs), suggesting that the spread of MDR Beijing isolates is a major problem in Yangon

    MinION nanopore sequencing accelerates progress towards ubiquitous genetics in water research

    No full text
    In 2014, Oxford Nanopore Technologies (ONT) introduced an affordable and portable sequencer called MinION. We reviewed emerging applications in water research and assessed progress made with this platform towards ubiquitous genetics. With >99% savings in upfront costs as compared to conventional platforms, the MinION put sequencing capacity into the hands of many researchers and enabled novel applications with diverse remits, including in countries without universal access to safe water and sanitation. However, to realize the MinION’s fabled portability, all the auxiliary equipment items for biomass concentration, genetic material extraction, cleanup, quantification, and sequencing library preparation also need to be lightweight and affordable. Only a few studies demonstrated fully portable workflows by using the MinION onboard a diving vessel, an oceanographic research ship, and at sewage treatment works. Lower nanopore sequencing read accuracy as compared to alternative platforms currently hinders MinION applications beyond research, and inclusion of positive and negative controls should become standard practice. ONT’s EPI2ME platform is a major step towards user-friendly bioinformatics. However, no consensus has yet emerged regarding the most appropriate bioinformatic pipeline, which hinders intercomparison of study results. Processing, storing, and interpreting large data sets remains a major challenge for ubiquitous genetics and democratizing sequencing applications
    corecore