98 research outputs found

    How accessibility influences citation counts: The case of citations to the full text articles available from ResearchGate

    Get PDF
    It is generally believed that the number of citations to an article can positively be correlated to its free online availability. In the present study, we investigated the possible impact of academic social networks on the number of citations. We chose the social web service “ResearchGate” as a case. This website acts both as a social network to connect researchers, and at the same time, as an open access repository to publish post-print version of the accepted manuscripts and final versions of open access articles. We collected the data of 1823 articles published by the authors from four different universities. By analyzing these data, we showed that although different levels of full text availability are observed for the four universities, there is always a significant positive correlation between full text availability and the citation count. Moreover, we showed that both post-print version and publisher’s version (i.e., final published version) of the archived manuscripts receive more citations than non-OA articles, and the difference in the citation counts of post-print manuscripts and publisher’s version articles is nonsignificant

    Nitric oxide-an endogenous inhibitor of gastric acid secretion in isolated human gastric glands

    Get PDF
    BACKGROUND: Endothelial nitric oxide synthase (eNOS) has previously been detected in the glandular part of the human gastric mucosa. Furthermore, nitric oxide (NO) has been shown to influence gastric secretion in various animal models. The present study was conducted to investigate the influence of exogenously and endogenously derived NO on histamine- and cAMP-stimulated gastric acid secretion in isolated human oxyntic glands. METHODS: Oxyntic glands were isolated from human gastric biopsies and were subsequently pre-treated with NO donors and nitric oxide synthase inhibitors and then exposed to histamine or dibutyryl-cAMP (db-cAMP). The secretory response of the glands was determined as accumulation of [(14)C]aminopyrine. RESULTS: The histamine- or db-cAMP-induced acid secretion was attenuated by L-arginine, a known source of endogenous NO, and also by the NO-donors sodium nitroprusside (SNP) and S-nitroso-N-acetyl-penicillamine (SNAP). Pre-treatment with either of the NOS inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) or N(G)-nitro-L-arginine (L-NNA) enhanced the secretory response. CONCLUSION: Our results show that NO inhibits gastric acid secretion in isolated human gastric glands, and that there is endogenous formation of NO within the glandular epithelium in the vicinity of the parietal cells

    Nanocomposite films for corrosion protection

    No full text
    This thesis describes technical and scientific aspects of new types of composite films/coatings for corrosion protection of carbon steel, composite films with nanometer thickness consisting of mussel adhesive protein (Mefp‐1) and ceria nanoparticles, and polymeric composite coatings with micrometre thickness consisting of conducting polymer and ceria nanoparticles in a UV‐curing polyester acrylate (PEA) resin. The influence of microstructure on corrosion behaviour was studied for a Fe‐Cr‐V‐N alloy containing micro‐sized nitrides with different chemical composition spread in martensitic alloy matrix. The Volta potential mapping suggested higher relative nobility for the nitride particles than the alloy matrix, and the nitrides with higher amounts of nitrogen and vanadium exhibited higher nobility. Potentiodynamic polarization measurements in a 0.1 M NaCl solution at neutral pH and ambient temperature showed passivity breakdown with initiation of localized corrosion which started in the boundary region surrounding the nitride particles, especially the ones enriched in Cr and Mo. Mefp‐1/ceria nanocomposite films were formed on silica and metal substrates by layer‐by‐layer immersion deposition. The film formation process was studied in situ using a Quartz Crystal Microbalance with Dissipation (QCM‐D). The film grows linearly with increasing number of immersions. Increasing Mefp‐1 concentration or using Mefp‐1 with larger size leads to more Mefp‐1 being deposited. Peak Force Quantitative Nanomechanical Mapping (Peak Force QNM) of the composite films in air indicated that the elastic modulus of the film increased when the film deposited had a higher Mefp‐1 concentration. It was also noted that the nature of the outermost layer can affect bulk morphology and surface mechanical properties of the film. The QCM‐D study of Mefp‐1 on an iron substrate showed that Mefp‐1 adsorbs at a high rate and changes its conformation with increasing adsorption time. The QCM‐D and in situ Peak Force QNM measurements showed that the addition of Fe3+ ions causes a transition in the single Mefp‐1 layer from an extended and soft layer to a denser and stiffer layer. In situ ATR‐FTIR and Confocal Raman Microscopy (CRM) analyses revealed complex formation between Fe3+ and catechol groups in Mefp‐1. Moreover, optical microscopy, SEM and AFM characterization of the Mefp‐1/ceria composite film formed on carbon steel showed micron‐size aggregates rich in Mefp‐1 and ceria, and a nanostructure of well dispersed ceria particles in the film. The CRM analysis confirmed the presence of Mefp‐1/Fe complexes in the film. Electrochemical impedance microscopy and potentiodynamic polarization measurements showed that the Mefp‐1/ceria composite film can provide corrosion protection for carbon steel, and that the protection efficiency increases with exposure time. Composite coatings of 10 ÎŒm thickness composed of a UV‐curing PEA resin and a small amount of conductive polymer and ceria nanoparticles were coated on carbon steel. The conductive polymer (PAni) was synthesized with phosphoric acid (PA) as the dopant by chemical oxidative polymerization. The ATR‐FTIR and SEM analyses confirmed that the added particles were well dispersed in the coatings. Electrochemical measurements during long exposure in 0.1 M NaCl solution, including open circuit potential (OCP) and EIS, were performed to investigate the protective performance of the coatings. The results showed that adding ceria nanoparticles can improve the barrier properties of the coating, and adding PAni‐PA can lead to active protection of the coating. Adding PAni‐PA and ceria nanoparticles simultaneously in the coating can improve the protection and stability of the composite coating, providing excellent corrosion protection for carbon steel.QC 20131024</p

    Nanocomposite films for corrosion protection

    No full text
    This thesis describes technical and scientific aspects of new types of composite films/coatings for corrosion protection of carbon steel, composite films with nanometer thickness consisting of mussel adhesive protein (Mefp‐1) and ceria nanoparticles, and polymeric composite coatings with micrometre thickness consisting of conducting polymer and ceria nanoparticles in a UV‐curing polyester acrylate (PEA) resin. The influence of microstructure on corrosion behaviour was studied for a Fe‐Cr‐V‐N alloy containing micro‐sized nitrides with different chemical composition spread in martensitic alloy matrix. The Volta potential mapping suggested higher relative nobility for the nitride particles than the alloy matrix, and the nitrides with higher amounts of nitrogen and vanadium exhibited higher nobility. Potentiodynamic polarization measurements in a 0.1 M NaCl solution at neutral pH and ambient temperature showed passivity breakdown with initiation of localized corrosion which started in the boundary region surrounding the nitride particles, especially the ones enriched in Cr and Mo. Mefp‐1/ceria nanocomposite films were formed on silica and metal substrates by layer‐by‐layer immersion deposition. The film formation process was studied in situ using a Quartz Crystal Microbalance with Dissipation (QCM‐D). The film grows linearly with increasing number of immersions. Increasing Mefp‐1 concentration or using Mefp‐1 with larger size leads to more Mefp‐1 being deposited. Peak Force Quantitative Nanomechanical Mapping (Peak Force QNM) of the composite films in air indicated that the elastic modulus of the film increased when the film deposited had a higher Mefp‐1 concentration. It was also noted that the nature of the outermost layer can affect bulk morphology and surface mechanical properties of the film. The QCM‐D study of Mefp‐1 on an iron substrate showed that Mefp‐1 adsorbs at a high rate and changes its conformation with increasing adsorption time. The QCM‐D and in situ Peak Force QNM measurements showed that the addition of Fe3+ ions causes a transition in the single Mefp‐1 layer from an extended and soft layer to a denser and stiffer layer. In situ ATR‐FTIR and Confocal Raman Microscopy (CRM) analyses revealed complex formation between Fe3+ and catechol groups in Mefp‐1. Moreover, optical microscopy, SEM and AFM characterization of the Mefp‐1/ceria composite film formed on carbon steel showed micron‐size aggregates rich in Mefp‐1 and ceria, and a nanostructure of well dispersed ceria particles in the film. The CRM analysis confirmed the presence of Mefp‐1/Fe complexes in the film. Electrochemical impedance microscopy and potentiodynamic polarization measurements showed that the Mefp‐1/ceria composite film can provide corrosion protection for carbon steel, and that the protection efficiency increases with exposure time. Composite coatings of 10 ÎŒm thickness composed of a UV‐curing PEA resin and a small amount of conductive polymer and ceria nanoparticles were coated on carbon steel. The conductive polymer (PAni) was synthesized with phosphoric acid (PA) as the dopant by chemical oxidative polymerization. The ATR‐FTIR and SEM analyses confirmed that the added particles were well dispersed in the coatings. Electrochemical measurements during long exposure in 0.1 M NaCl solution, including open circuit potential (OCP) and EIS, were performed to investigate the protective performance of the coatings. The results showed that adding ceria nanoparticles can improve the barrier properties of the coating, and adding PAni‐PA can lead to active protection of the coating. Adding PAni‐PA and ceria nanoparticles simultaneously in the coating can improve the protection and stability of the composite coating, providing excellent corrosion protection for carbon steel.QC 20131024</p

    The influence of a Zr-based conversion treatment on interfacial bonding strength and stability of epoxy coated carbon steel

    No full text
    The effect of a zirconium (Zr)-based pretreatment on interfacial bonding properties of a fusion bonded epoxy (FBE) coating on carbon steel is investigated. The initiation and kinetics of delamination of epoxy coatings applied on differently pretreated carbon steel surfaces is studied with scanning Kelvin probe (SKP). In-situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is applied to study interfacial coating-oxide chemistry changes upon electrolyte diffusion towards the buried interface. Corresponding coating degradation is analyzed with the use of electrochemical impedance spectroscopy (EIS). pull off experiments showed a clear beneficial effect of the Zr-based pretreatment improving the dry and wet adhesion properties of the fusion bonded epoxy coating to the carbon steel surface particularly upon exposure to wet and corrosive conditions. This increase in interfacial bonding stability is confirmed by the ATR-FTIR and EIS experiments and delayed and slower delamination was observed in the SKP measurements.Accepted Author Manuscript(OLD) MSE-6(OLD) MSE-
    • 

    corecore