3 research outputs found
The Shared Behavioral and Biochemical Effects of Rapid-Acting Antidepressants Ketamine and Nitrous Oxide in a Chronic Corticosterone-Induced Animal Model of Depression
Psykoterapia ja yleisesti käytössä olevat masennuslääkkeet vaikuttavat masennusoireisiin hitaasti, joten nopeavaikutteisimmille masennushoidoille on merkittävä tarve. Subanesteettinen annos ketamiinia pystyy lieventämään masennuksen oireita (anhedonia, masentunut mieliala) ja itsemurha-ajatuksia muutamien tuntien sisällä ja vaikutus voi kestää jopa muutaman päivän. Dityppioksidin (N2O, “ilokaasu”) on äskettäin osoitettu johtavan samankaltaiseen nopeaan masennuslääkevasteeseen (Nagele et al. 2015). Tutkimusryhmämme löysi sekä ketamiinin että ilokaasun lisäävän hiirissä viiden mRNA:n ekspressiota, jotka liittyvät MAPK-signalointiin ja synaptiseen muovautuvaisuuteen. Molemmat ovat tärkeitä nopeavaikutteisten masennuslääkkeiden toiminnalle. Tässä tutkimuksessa jatkettiin ketamiinin ja ilokaasun yhteisten taustamekanismien selvittämistä C57BL/6JHsd hiirissä, hyödyntäen käyttäytymiskokeita masennuksen kaltaisen käytöksen tarkasteluun ja RT-qPCR:ää biokemiallisia analyysejä varten. Ensiksi selvitimme kroonisen kortikosteronin juoton vaikutusta käyttäytymiseen, ja ketamiinin sekä ilokaasun kykyä muuttaa tätä. Krooninen kortikosteroni johti osittaiseen masennuksen kaltaiseen käyttäytymiseen, joka ilmeni turkin huonontumisella ja vähentyneellä sakkariiniliuoksen juomisella. Sekä ketamiini että ilokaasu palauttivat vähentyneen sakkariiniliuoksen juomisen kontrollien tasolle. Seuraavaksi lähdimme selvittämään ketamiinin sekä ilokaasun vaikutusta viiteen aikaisemmin löytämiimme yhteisiin mRNA-kohteisiin: Arc, Dusp1, Dusp5, Dusp6 ja Nr4a1. Ilokaasu lisäsi merkittävästi kaikkien muiden paitsi Dusp5 ekspressiota prefrontaalikorteksissa kaksi tuntia ilokaasun hoidon aloittamisen jälkeen. Kumpikaan ketamiini tai krooninen kortikosteroni itsessään eivät aiheuttaneet muutoksia.
Tämän tutkimuksen tulokset viittaavat siihen, että ilokaasu voi olla potentiaalinen ehdokas masennuksen oireiden nopealle lievitykselle. Tutkielmassa ehdotetaan nopeavaikutteisten masennuslääkkeiden – tarkemmin ilokaasun – vaikutusten johtuvan tietynlaisesta homeostaattisesta vasteesta haasteelle. Tässä kontekstissa haasteena toimii aivokuoren eksitaatio, jota ilokaasun on aiemmin havaittu aiheuttavan. Eksitaatio johtaa MAPK-reitin aktivaatioon ja seuraavaan Arc-, Dusp- ja Nr4a1-signalointiin. Tällöin mRNA-kohteiden tasot riippuisivat siitä missä faasissa homeostaattinen vaste on. Näin ollen aika hoidon ja aivonäytteiden dissektion välillä voi johtaa havaittuihin ristiriitoihin aikaisempien tutkimusten kanssa. Tulevaisuuden tutkimukset hyötyisivät krooniseen kortikosteronin juottoon perustuvan masennuksen hiirimallin yksityiskohtaisemmasta tarkastelusta, koska sillä voi olla mahdollisuus pienentää käyttäytymisen variaatiota ja näin ollen vähentää prekliiniseen tutkimukseen vaadittavia eläinmääriä. Tämän tutkielman tulokset havainnollistavat ilokaasun potentiaalisten nopeiden masennuslääkevaikutusten taustalla olevia tekijöitä, ja sitä kuinka nämä mahdollisesti eroavat ketamiinin toiminnastaWhile weeks of continuous treatment is required for conventional antidepressant drugs (e.g. fluoxetine) to bring their full therapeutic effects, a subanesthetic dose of ketamine alleviates the core symptoms of depression (anhedonia, depressed mood) and suicidal thinking within just few hours and the effects may last for days. Nitrous oxide (N2O, “laughing gas”), another NMDAR antagonist, has recently been shown to have similar rapid antidepressant effects in treatment-resistant depressed patients (Nagele et al. 2015). We previously found using naïve mice ketamine and N2O treatment to upregulate five mRNAs related to the MAPK pathway and synaptic plasticity, both implicated as being important in the action of rapid-acting antidepressants. In the current study, these shared mechanisms were further investigated in C57BL/6JHsd mice, using behavioral test batteries to study depressive-like behaviour and RT-qPCR for biochemical analyses. We first aimed to demonstrate behavioral differences between naïve mice and a chronic corticosterone-induced animal model of depression, and to use this model to investigate antidepressant-like effects of ketamine and N2O. According to the results, chronic corticosterone produced some behaviors typical of a depressive-like phenotype, namely significant worsening of coat state and decreased saccharin consumption in the saccharin preference test. Both ketamine and N2O exhibited antidepressant-like effects by reverting decreased saccharin preference. We then aimed to elucidate the effects of ketamine and N2O on five previously found shared mRNAs: Arc, Dusp1, Dusp5, Dusp6 and Nr4a1. N2O significantly upregulated all targets in the vmPFC, except Dusp5, two hours after beginning of N2O treatment. Neither ketamine nor sole chronic corticosterone produced any significant changes.
The results of this study suggest that N2O is a potential candidate for rapid alleviation of depressive symptoms. We suggest that the action of rapid-acting antidepressants, more specifically N2O, is based on a homeostatic response of the brain to a presented challenge. Here this challenge would be cortical excitation previously been shown to be caused by N2O, which leads to activation of pathways such as MAPK and subsequent Arc, Dusp and Nr4a1 signaling. The level of expression of these markers would then depend on which phase this response is in and hence, the differences in time between treatment and brain sample dissection could be a reason for conflicting results to previous research. Future studies would benefit from detailed investigation of the chronic corticosterone-induced model due to its potential in controlling for behavioral variability, thus reducing the number of animals needed for preclinical research. Overall the preliminary findings of this study could be one of the first steps in the search for the mechanisms underlying the potential antidepressant effect of N2O, how these molecular markers are related to its action and how it differs from the action of ketamine
A wake-up call : Sleep physiology and related translational discrepancies in studies of rapid-acting antidepressants
Depression is frequently associated with sleep problems, and clinical improvement often coincides with the normalization of sleep architecture and realignment of circadian rhythm. The effectiveness of treatments targeting sleep in depressed patients, such as sleep deprivation, further demonstrates the confluence of sleep and mood. Moreover, recent studies showing that the rapid-acting antidepressant ketamine influences processes related to sleep-wake neurobiology have led to novel hypotheses explaining rapid and sustained antidepressant effects. Despite the available evidence, studies addressing ketamine's antidepressant effects have focused on pharmacology and often overlooked the role of physiology. To explore this discrepancy in research on rapid acting antidepressants, we examined articles published between 2009-2019. A keyword search algorithm indicated that vast majority of the articles completely ignored sleep. Out of the 100 most frequently cited pre clinical and clinical research papers, 89 % and 71 %, respectively, did not mention sleep at all. Furthermore, only a handful of these articles disclosed key experimental variables, such as the times of treatment administration or behavioral testing, let alone considered the potential association between these variables and experimental observations. Notably, in preclinical studies, treatments were preferentially administered during the inactive period, which is the polar opposite of clinical practice and research. We discuss the potential impact of this practice on the results in the field. Our hope is that this perspective will serve as a wake-up call to (re)-examine rapid-acting antidepressant effects with more appreciation for the role of sleep and chronobiology.Peer reviewe
Effects of nitrous oxide and ketamine on electrophysiological and molecular responses in the prefrontal cortex of mice : A comparative study
Nitrous oxide (N2O; laughing gas) has recently reported to produce rapid antidepressant effects, but little is known about the underlying mechanisms. We performed transcriptomics, in situ hybridization, and electrophysiological studies to examine the potential shared signatures induced by 1 h inhalation of 50% N2O and a single subanesthetic dose of ketamine (10 mg/kg, i.p.) in the medial prefrontal cortex (mPFC) in adult mice. Both treatments similarly affected the transcription of several negative regulators of mitogen-activated protein kinases (MAPKs), namely, dual specificity phosphatases (DUSPs). The effects were primarily located in the pyramidal cells. Notably, the overall effects of N2O on mRNA expression were much more prominent and widespread compared to ketamine. Ketamine caused an elevation of the spiking frequency of putative pyramidal neurons and increased gamma activity (30–100 Hz) of cortical local field potentials. However, N2O produced no such effects. Spiking amplitudes and spike-to-local field potential phase locking of putative pyramidal neurons and interneurons in this brain area showed no uniform changes across treatments. Our findings suggest that N2O and subanesthetic-dose ketamine target MAPK pathway in the mPFC but produce varying acute electrophysiological responses.Peer reviewe