705 research outputs found

    Saari's homographic conjecture for planar equal-mass three-body problem in Newton gravity

    Full text link
    Saari's homographic conjecture in N-body problem under the Newton gravity is the following; configurational measure \mu=\sqrt{I}U, which is the product of square root of the moment of inertia I=(\sum m_k)^{-1}\sum m_i m_j r_{ij}^2 and the potential function U=\sum m_i m_j/r_{ij}, is constant if and only if the motion is homographic. Where m_k represents mass of body k and r_{ij} represents distance between bodies i and j. We prove this conjecture for planar equal-mass three-body problem. In this work, we use three sets of shape variables. In the first step, we use \zeta=3q_3/(2(q_2-q_1)) where q_k \in \mathbb{C} represents position of body k. Using r_1=r_{23}/r_{12} and r_2=r_{31}/r_{12} in intermediate step, we finally use \mu itself and \rho=I^{3/2}/(r_{12}r_{23}r_{31}). The shape variables \mu and \rho make our proof simple

    Voting and the Cardinal Aggregation of Judgments

    Get PDF
    The paper elaborates the idea that voting is an instance of the aggregation of judgments, this being a more general concept than the aggregation of preferences. To aggregate judgments one must first measure them. I show that such aggregation has been unproblematic whenever it has been based on an independent and unrestricted scale. The scales analyzed in voting theory are either context dependent or subject to unreasonable restrictions. This is the real source of the diverse 'paradoxes of voting' that would better be termed 'voting pathologies'. The theory leads me to advocate what I term evaluative voting. It can also be called utilitarian voting as it is based on having voters express their cardinal preferences. The alternative that maximizes the sum wins. This proposal operationalizes, in an election context, the abstract cardinal theories of collective choice due to Fleming and Harsanyi. On pragmatic grounds, I argue for a three valued scale for general elections

    Modularity and Optimality in Social Choice

    Get PDF
    Marengo and the second author have developed in the last years a geometric model of social choice when this takes place among bundles of interdependent elements, showing that by bundling and unbundling the same set of constituent elements an authority has the power of determining the social outcome. In this paper we will tie the model above to tournament theory, solving some of the mathematical problems arising in their work and opening new questions which are interesting not only from a mathematical and a social choice point of view, but also from an economic and a genetic one. In particular, we will introduce the notion of u-local optima and we will study it from both a theoretical and a numerical/probabilistic point of view; we will also describe an algorithm that computes the universal basin of attraction of a social outcome in O(M^3 logM) time (where M is the number of social outcomes).Comment: 42 pages, 4 figures, 8 tables, 1 algorithm

    On the Global Existence of Bohmian Mechanics

    Get PDF
    We show that the particle motion in Bohmian mechanics, given by the solution of an ordinary differential equation, exists globally: For a large class of potentials the singularities of the velocity field and infinity will not be reached in finite time for typical initial values. A substantial part of the analysis is based on the probabilistic significance of the quantum flux. We elucidate the connection between the conditions necessary for global existence and the self-adjointness of the Schr\"odinger Hamiltonian.Comment: 35 pages, LaTe

    An assessment of attitudes towards plastics and bioplastics in Europe

    Get PDF
    Over the last 50 years, conventional fossil-based plastics have become an integral part of our everyday lives. Apart from their low production costs, this is due to a number of their unique properties, including durability, strength, lightness, electrical and thermal insulation, resistance to chemicals and corrosion. The production of plastics has increased from 1.5 million metric tons in 1950 to 359 million metric tons in 2018. Of this total, 61.8 million metric tons were produced in Europe. There are various problems associated with plastic use and disposal that pose a serious threat to both the physical environment and human health. Since public behaviour plays a key role when it comes to the use of plastic, this paper reports on a study that focused on an assessment of attitudes towards plastics and bioplastics in Europe. The results showed that packaging is the most frequent modality of plastic used among participants. In addition, majority of participants are aware that plastic waste can affect environment and human health and therefore segregate and properly dispose plastics. Also, even though most respondents were aware of the environmental problems related to plastic use and showed a positive inclination towards using bioplastic materials, their limited availability and lack of relevant information about bioplastics pose a problem for wider use. Departing from the assumption that the public attitude is a determining factor in the consumption of plastics as a whole and bioplastics in particular, this paper also sheds some light on the current situation, identifying some trends and information gaps which should be addressed in order to encourage a more rational use of plastics in Europe

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    X-wave mediated instability of plane waves in Kerr media

    Get PDF
    Plane waves in Kerr media spontaneously generate paraxial X-waves (i.e. non-dispersive and non-diffractive pulsed beams) that get amplified along propagation. This effect can be considered a form of conical emission (i.e. spatio-temporal modulational instability), and can be used as a key for the interpretation of the out of axis energy emission in the splitting process of focused pulses in normally dispersive materials. A new class of spatio-temporal localized wave patterns is identified. X-waves instability, and nonlinear X-waves, are also expected in periodical Bose condensed gases.Comment: 4 pages, 6 figure
    • 

    corecore