166 research outputs found

    Dynamics of photo-activated Coulomb complexes

    Full text link
    Intense light with frequencies above typical atomic or molecular ionization potentials as provided by free-electron lasers couples many photons into extended targets such as clusters and biomolecules. This implies, in contrast to traditional multi-photon ionization, multiple single-photon absorption. Thereby, many electrons are removed from their bound states and either released or trapped if the target charge has become sufficiently large. We develop a simple model for this photo activation to study electron migration and interaction. It satisfies scaling relations which help to relate quite different scenarios. To understand this type of multi-electron dynamics on very short time scales is vital for assessing the radiation damage inflicted by that type of radiation and to pave the way for coherent diffraction imaging of single molecules.Comment: 14 pages, 6 figures, 1 tabl

    Multiple ionization of neon by soft X-rays at ultrahigh intensity

    Full text link
    At the free-electron laser FLASH, multiple ionization of neon atoms was quantitatively investigated at 93.0 eV and 90.5 eV photon energy. For ion charge states up to 6+, we compare the respective absolute photoionization yields with results from a minimal model and an elaborate description. Both approaches are based on rate equations and take into acccout a Gaussian spatial intensity distribution of the laser beam. From the comparison we conclude, that photoionization up to a charge of 5+ can be described by the minimal model. For higher charges, the experimental ionization yields systematically exceed the elaborate rate based prediction.Comment: 10 pages, 3 figure

    Excitation and relaxation in atom-cluster collisions

    Get PDF
    Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation mechanisms (electronic and vibrational) as well as the related relaxation phenomena (phase transitions and fragmentation) are studied in a common framework as a function of the impact energy (eV...MeV). Cluster "transparency" characterized by practically undisturbed atom-cluster penetration is predicted to be an important reaction mechanism within a particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf

    Was Baltica part of Rodinia?

    Get PDF
    Late Ediacaran opening of the Iapetus Ocean is typically considered to reflect separation of Baltica and Laurentia during final breakup of the Rodinia supercontinent, with subsequent closure during the Caledonian Orogeny. However, evidence of the pre-opening juxtaposition of Baltica and Laurentia is limited to purportedly similar apparent polar wander paths and correlation of Rodinia-forming orogenic events. We show that a range of existing data do not unequivocally support correlation of these orogens, and that geologic and palaeomagnetic data instead favour separation of Baltica and Laurentia as early as 1.1–1.2 Ga. Furthermore, new detrital zircon U–Pb age and Ar–Ar thermochronological data from Norway point towards an active western Baltican margin throughout most of the Neoproterozoic and early Palaeozoic. These findings are inconsistent with the majority of palaeogeographic reconstructions that place Baltica near the core of the Rodinia supercontinent

    Laser-Cluster-Interaction in a Nanoplasma-Model with Inclusion of Lowered Ionization Energies

    Full text link
    The interaction of intense laser fields with silver and argon clusters is investigated theoretically using a modified nanoplasma model. Single pulse and double pulse excitations are considered. The influence of the dense cluster environment on the inner ionization processes is studied including the lowering of the ionization energies. There are considerable changes in the dynamics of the laser-cluster interaction. Especially, for silver clusters, the lowering of the ionization energies leads to increased yields of highly charged ions.Comment: 10 pages, 11 figure

    Dynamical ionization ignition of clusters in intense and short laser pulses

    Full text link
    The electron dynamics of rare gas clusters in laser fields is investigated quantum mechanically by means of time-dependent density functional theory. The mechanism of early inner and outer ionization is revealed. The formation of an electron wave packet inside the cluster shortly after the first removal of a small amount of electron density is observed. By collisions with the cluster boundary the wave packet oscillation is driven into resonance with the laser field, hence leading to higher absorption of laser energy. Inner ionization is increased because the electric field of the bouncing electron wave packet adds up constructively to the laser field. The fastest electrons in the wave packet escape from the cluster as a whole so that outer ionization is increased as well.Comment: 8 pages, revtex4, PDF-file with high resolution figures is available from http://mitarbeiter.mbi-berlin.de/bauer/publist.html, publication no. 24. Accepted for publication in Phys. Rev.

    Locomotion modulates specific functional cell types in the mouse visual thalamus

    Get PDF
    The visual system is composed of diverse cell types that encode distinct aspects of the visual scene and may form separate processing channels. Here we present further evidence for that hypothesis whereby functional cell groups in the dorsal lateral geniculate nucleus (dLGN) are differentially modulated during behavior. Using simultaneous multi-electrode recordings in dLGN and primary visual cortex (V1) of behaving mice, we characterized the impact of locomotor activity on response amplitude, variability, correlation and spatiotemporal tuning. Locomotion strongly impacts the amplitudes of dLGN and V1 responses but the effects on variability and correlations are relatively minor. With regards to tunings, locomotion enhances dLGN responses to high temporal frequencies, preferentially affecting ON transient cells and neurons with nonlinear responses to high spatial frequencies. Channel specific modulations may serve to highlight particular visual inputs during active behaviors

    Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    Get PDF
    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading.Ellison Medical FoundationMartin Richmond Memorial FundNational Institutes of Health (U.S.). (Grant UL1RR025758)National Institutes of Health (U.S.). (Grant F32EY014750-01)MIT Class of 1976 (Funds for Dyslexia Research
    • …
    corecore