95 research outputs found

    The AFLOW Fleet for Materials Discovery

    Full text link
    The traditional paradigm for materials discovery has been recently expanded to incorporate substantial data driven research. With the intent to accelerate the development and the deployment of new technologies, the AFLOW Fleet for computational materials design automates high-throughput first principles calculations, and provides tools for data verification and dissemination for a broad community of users. AFLOW incorporates different computational modules to robustly determine thermodynamic stability, electronic band structures, vibrational dispersions, thermo-mechanical properties and more. The AFLOW data repository is publicly accessible online at aflow.org, with more than 1.7 million materials entries and a panoply of queryable computed properties. Tools to programmatically search and process the data, as well as to perform online machine learning predictions, are also available.Comment: 14 pages, 8 figure

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures

    Get PDF
    In plants, the C-repeat binding factors (Cbfs) are believed to regulate low-temperature (LT) tolerance. However, most functional studies of Cbfs have focused on characterizing expression after an LT shock and have not quantified differences associated with variable temperature induction or the rate of response to LT treatment. In the Triticeae, rye (Secale cereale L.) is one of the most LT-tolerant species, and is an excellent model to study and compare Cbf LT induction and expression profiles. Here, we report the isolation of rye Cbf genes (ScCbfs) and compare their expression levels in spring- and winter-habit rye cultivars and their orthologs in two winter-habit wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Eleven ScCbfs were isolated spanning all four major phylogenetic groups. Nine of the ScCbfs mapped to 5RL and one to chromosome 2R. Cbf expression levels were variable, with stronger expression in winter- versus spring-habit rye cultivars but no clear relationship with cultivar differences in LT, down-stream cold-regulated gene expression and Cbf expression were detected. Some Cbfs were expressed only at warmer acclimation temperatures in all three species and their expression was repressed at the end of an 8-h dark period at warmer temperatures, which may reflect a temperature-dependent, light-regulated diurnal response. Our work indicates that Cbf expression is regulated by complex genotype by time by induction–temperature interactions, emphasizing that sample timing, induction–temperature and light-related factors must receive greater consideration in future studies involving functional characterization of LT-induced genes in cereals

    Recent translational research: microarray expression profiling of breast cancer – beyond classification and prognostic markers?

    Get PDF
    Genomic expression profiling has greatly improved our ability to subclassify human breast cancers according to shared molecular characteristics and clinical behavior. The logical next question is whether this technology will be similarly useful for identifying the dominant signaling pathways that drive tumor initiation and progression within each breast cancer subtype. A major challenge will be to integrate data generated from the experimental manipulation of model systems with expression profiles obtained from primary tumors. We highlight some recent progress and discuss several obstacles in the use of expression profiling to identify pathway signatures in human breast cancer

    Nicotinic receptors mediate stress-nicotine detrimental interplay via dopamine cells’ activity

    Get PDF
    Epidemiological studies report strong association between mood disorders and tobacco addiction. This high comorbidity requires adequate treatment but the underlying mechanisms are unknown. We demonstrate that nicotine exposure, independent of drug withdrawal effects, increases stress sensitivity, a major risk factor in mood disorders. Nicotine and stress concur to induce long-lasting cellular adaptations within the dopamine (DA) system. This interplay is underpinned by marked remodeling of nicotinic systems, causing increased ventral tegmental area (VTA) DA neurons’ activity and stress-related behaviors, such as social aversion. Blocking β2 or α7 nicotinic acetylcholine receptors (nAChRs) prevents, respectively, the development and the expression of social stress-induced neuroadaptations; conversely, facilitating α7 nAChRs activation specifically in the VTA promotes stress-induced cellular and behavioral maladaptations. Our work unravels a complex nicotine-stress bidirectional interplay and identifies α7 nAChRs as a promising therapeutic target for stress-related psychiatric disorders

    Role of lipid apheresis in changing times

    Get PDF
    During the last decades, LDL-apheresis was established as an extracorporeal treatment option for patients with severe heterozygous or homozygous familial hypercholesterolemia (FH) that is resistant to conventional treatment strategies such as diet, drugs, and changes in lifestyle. Nearly half a century ago, the first LDL-apheresis treatment was performed by plasma exchange in a child with homozygous FH
    corecore