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estrogenic burden and migration from plastic bottles
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Abstract
Background, aim, and scope Food consumption is an
important route of human exposure to endocrine-disrupting
chemicals. So far, this has been demonstrated by exposure
modeling or analytical identification of single substances in
foodstuff (e.g., phthalates) and human body fluids (e.g.,
urine and blood). Since the research in this field is focused on
few chemicals (and thus missing mixture effects), the overall
contamination of edibles with xenohormones is largely
unknown. The aim of this study was to assess the integrated
estrogenic burden of bottled mineral water as model food-
stuff and to characterize the potential sources of the estro-
genic contamination.
Materials, methods, and results In the present study, we
analyzed commercially available mineral water in an in vitro
system with the human estrogen receptor alpha and detected
estrogenic contamination in 60% of all samples with a
maximum activity equivalent to 75.2 ng/l of the natural sex
hormone 17β-estradiol. Furthermore, breeding of the mol-
luskan model Potamopyrgus antipodarum in water bottles
made of glass and plastic [polyethylene terephthalate
(PET)] resulted in an increased reproductive output of
snails cultured in PET bottles. This provides first evidence
that substances leaching from plastic food packaging
materials act as functional estrogens in vivo.

Discussion and conclusions Our results demonstrate a
widespread contamination of mineral water with xenoestro-
gens that partly originates from compounds leaching from
the plastic packaging material. These substances possess
potent estrogenic activity in vivo in a molluskan sentinel.
Overall, the results indicate that a broader range of foodstuff
may be contaminated with endocrine disruptors when
packed in plastics.
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1 Background, aim, and scope

With the publication of Theo Colborn’s scientific best-seller
Our stolen future (Colborn et al. 1996), endocrine disrup-
tion became a public, political, and scientific issue. Since
then, the list of suspected endocrine disrupting chemicals
(EDCs) has been steadily growing, and the research in this
field has made substantial progress (Hotchkiss et al. 2008).
However, the causality between the exposure to EDCs and
adverse human health effects is still controversially dis-
cussed (Safe 2000, 2005; Sharpe 2003; Waring and Harris
2005) due to the multifactoral etiology of hormone-related
diseases, although evidence for causality between exposure
to xenohormones and developmental as well as reproduc-
tive disorders strengthens (Sharpe 2003).
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For instance, in utero exposure to phthalate plasticizers
has been shown to be associated with a decreased anogenital
distance in male infants indicating undervirilization induced
by environmental levels of these endocrine disruptors (Swan
et al. 2005). Vice versa, phthalate exposure to girls has
claimed to be correlated with an earlier onset of puberty
(Colón et al. 2000), an effect that has been experimentally
verified in mice in the case of the plastic component
bisphenol A as well (Howdeshell et al. 1999). Recently, the
debate about endocrine disruption has been heated up by
findings that some EDCs may exhibit epigenetic trans-
generational effects (Anway et al. 2005).

Though many endocrine disruptors are ubiquitous in the
environment and humans are known to be contaminated
with a wide range of compounds (Damstra et al. 2002),
exact routes of human exposure remain largely unknown
(Damstra 2003; Schettler 2006; Sharpe 2003). Apparently
there are various sources and pathways of xenohormone
uptake: inhalation (i.e., from indoor air), dermal absorption
(i.e., from personal care products), and ingestion of food.
The contamination of foodstuff by production-related
compounds has been documented analytically. Nonylphe-
nols, as degradation products of commercial and industrial
surfactants, for example, are identified ubiquitously in a
broad variety of nourishments (Guenther et al. 2002).

Another source of xenobiotics in foodstuff is rarely taken
into account when dealing with endocrine disruption:
substances migrating from packaging material into edibles
(Lau and Wong 2000). In order to optimize the properties of
packaging materials (i.e., durability, elasticity, color), a
variety of additives, such as stabilizers, antioxidants,
coupling agents, and pigments, is used in the formulation.
Especially additives from plastics (so-called plasticizers)
are known to leach out of the packaging and consequently
accumulate in the foodstuff (Biles et al. 1998; Casajuana
and Lacorte 2003; Fankhauser-Noti et al. 2006; Mcneal
et al. 2000; Zygoura et al. 2005). Given the fact that some
of these compounds are known EDCs (i.e., bisphenol A,
vom Saal and Hughes 2005), we hypothesize that the
migration of substances from packaging material into food-
stuff may contribute to human exposure with xenohormones.

In the current study, bottled mineral water serves as a
model foodstuff because it is a simple matrix and it does not
contain endogenous hormones, like for example dairy
products. Moreover, consumption of mineral water is increas-
ing worldwide (Montuori et al. 2008). On the Germanmarket,
mineral water is available in two major sorts of packaging
material: glass and PET (PETE, polyethylene terephthalate,
resin identification code 1) bottles. Moreover, some brands of
mineral water are sold in a packaging called Tetra Pak (Tetra
Brick) although only to a minor extent. These paperboard
boxes are coated with an inner plastic film and are more
commonly used for packing milk and fruit juices.

2 Materials and methods

2.1 Samples

Twenty brands of mineral water (coded as A–O, nine
bottled in glass and plastic each, two bottled in Tetra Pak)
from different price segments were chosen either because of
their high market shares or ratio of glass/PET use in
Germany. The samples included mineral water from four
producers (A–D) that were obtained both in glass and in
PET bottles. For each brand, six mineral water bottles were
purchased in local shops and stored under consumer
relevant conditions (dark, 4°C before analysis). Mineral
water samples were taken from three bottles per brand and
tested directly with the yeast estrogen screen (YES) in three
independent experiments. A representative subset of four
brands of glass bottles and six brands of plastic bottles
(brands A–E) was chosen for the reproduction test with
Potamopyrgus antipodarum (three bottles per brand).

2.2 Yeast estrogen screen

The yeast strain contains the stably transfected human
estrogen receptor alpha (hERα) gene and an expression
plasmid containing the reporter gene lacZ encoding β-
galactosidase under the control of estrogen response
elements (ERE). Upon receptor activation and ERE
binding, β-galactosidase is expressed. The β-galactosidase
activity is measured as the change in absorbance at 540 nm
caused by cleavage of the chromogenic substrate chlor-
ophenol red-β-D-galactopyranoside (CPRG).

Assay procedure and data analysis were conducted as
described previously (Routledge and Sumpter 1996;
Rutishauser et al. 2004), with several modifications to test
water samples directly and to accelerate the sample through-
put. Minimal medium was prepared by supplementing ultra-
pure water with 0.67%w/v yeast nitrogen base without amino
acids, 2%w/v D-(+)-glucose, and the appropriate amino acids.
Yeast cultures were grown overnight to log-phase.

Seventy-five microliters water sample were added to a
96-well microtiter plate in eight replicates. Preliminary
experiments indicated that laboratory tap water was least
contaminated and hence served as a negative control (eight
replicates on each plate). Fivefold minimal medium was
supplemented with 100 µM copper(II)sulfate, 0.67 mg/ml
ampicillin, and streptomycin. Twenty-five microliters medium
(containing 1% v/v ethanol) were added to each well. A serial
dilution of 17β-estradiol in fivefold medium (in 1% v/v
ethanol, 3 pM–100 nM final concentration) served as a
positive control (eight replicates per concentration in each
experiment). Yeast cells from the log-phase culture were
diluted 1:5 in fresh minimal medium, and 20 µl of the cell
suspension were added to each well. For blank values (eight
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replicates on one plate) medium was added instead of cells.
The microtiter plates were sealed with a gas permeable
membrane (Breathe-Easy, Diversified Biotech, Boston,
MA, USA) to avoid cross contamination and were incu-
bated for 24 h (30°C, 750 rpm).

Relative cell density was determined by measuring
optical density at 595 nm. For β-galactosidase assay, buffer
Z was supplemented with 40% w/v CPRG, 0.25% v/v β-
mercaptoethanol, and 170 U/ml lyticase. One hundred
microliters were added to each well. Optical density at
540 nm was determined in 30-min intervals over a period of
4 h.

Optical densities were corrected according to blank values
and relative cell density. For each time of measurement,
dose–response relationship for 17β-estradiol was calculated
using a four-parameter logistic function (Prism 5.0, Graph-
Pad Software Inc., San Diego, CA, USA). To assure
comparability of independent experiments, only those mea-
surements were considered whose half maximal response
(EC50) was next to 1×10−10 M 17β-estradiol (range, 9×
10−11 to 2×10−10 M) with a correlation coefficient r2 >0.9.

Estradiol equivalents (EEQ) of the water samples were
calculated by inserting the corrected optical densities
(corrected OD) in the inversion of the four parameter
logistic function (Eq. 1) fitted with the curve parameters
obtained from the appropriate positive control. EEQ values
of the samples were corrected for background values in the
negative control (1.28±0.18 ng/l EEQ, n=226) and dilution
factor (1.6).

log EEQ ¼ log EC50

� log top� bottom½ � = corrected OD� bottom½ � � 1ð Þð Þ
hillslope

� �

ð1Þ

2.3 Reproduction test with Potamopyrgus antipodarum

The test was conducted with the following specifications:
All bottles were rinsed three times with ultrapure water and
filled with 700 ml defined culturing water (pH 8.0±0.5,
conductivity 770±100 µS/cm). One hundred individuals of
P. antipodarum (from a laboratory stock consisting exclu-
sively of parthenogenetic females, see Schmitt et al. 2008)
were inserted in each bottle. Borosilicate Erlenmeyer flasks
with 700 ml culturing water served as a negative solvent
control (0.0014% v/v ethanol, n=3); 17α-ethinylestradiol
(EE2, CAS 57-63-6) was used as positive control at a
nominal concentration of 25 ng/l (in 0.0014% v/v ethanol,
n=3). The test was conducted under defined conditions
(15±1°C, constant aeration, 16/8 h light/dark rhythm,
random placement of replicates). P. antipodarum were fed
every 4 to 5 days with 0.2 mg TetraPhyll® per replicate. At

the same time, all vessels were cleaned. A maximum
mortality of 5% was observed at the end of the experiment.

In each replicate, 20 mudsnails were investigated for
parthenogenetic production of embryos after 14, 28, and
56 days following a relaxation in 2.5% w/v magnesium
chloride as reported previously (Duft et al. 2003b; Jobling
et al. 2004). The total number of embryos per female after
56 days exposure proved to be a robust parameter for
assessing endocrine disruptive effects in vivo.

2.4 Statistical analysis

Data analysis was performed using GraphPad Prism® 5.0
(GraphPad Software, Inc., San Diego, USA). Nonparametric
Mann–Whitney tests (two-tailed) were applied to compare
the medians of data sets. In case of YES, data outliners were
detected using Grubb’s test (p<0.05) and excluded. All
presented data comprise of mean±standard error of the
mean (SEM).

3 Results

3.1 Yeast estrogen screen

Screening of mineral water samples with the YES revealed
a significantly elevated estrogenic activity in 12 of 20
brands (Fig. 1). Results were consistent for the three
independent replicates per brand as well as for the three
independent experiments performed. Average estrogenic
potencies of the individual brands expressed in concen-

Fig. 1 Estrogenic potencies of mineral water expressed as estradiol
equivalent concentrations (EEQ) measured with the yeast estrogen
screen. Mineral water from three individual bottles of several brands
(A–O) were tested in three independent experiments (each sample in
eight replicates). Negative control (NC), n=226; water samples, n=65
to 75. b.q.l. below quantification limit, double stars p<0.01 and triple
stars p<0.001 as determined by Mann–Whitney test

280 Environ Sci Pollut Res (2009) 16:278–286



trations equivalent to 17β-estradiol (EEQ) ranged from
below quantification limit (seven brands) to a maximum of
75.2±5.95 ng/l EEQ (brand C–P, n=67). The calculated
average estrogenic burden of all samples was 18.0±
0.80 ng/l EEQ (n=1363). Furthermore, we detected a
significantly increased hormonal activity in 33% of all
mineral water samples bottled in glass (three of nine
brands). Compared to that, 78% of the waters from PET
bottles (seven of nine brands) and both samples bottled in
Tetra Pak were estrogen positive.

To evaluate the influence of the packaging material
directly, we analyzed four mineral waters that originated
from the same source (A–D) but were bottled in both glass
and plastic. Apart from source D, mineral waters purchased
in glass bottles were less estrogenic than the corresponding
samples in PET bottles (Table 1). Water produced by spring
B is available in three different plastic bottles (B-PC/M/N).
Estrogenic activity was not detectable in samples taken
from glass bottles (B-G) and one sort of PET bottle (B-PM)
that is returnable and is cleaned and filled several times. In
contrast, the same water is estrogenic when supplied in one-
way containers (B-PC/N). The same phenomenon is ob-
served in case of spring D: Again, estrogenic activity in
water from multi-use PET bottles (D-P) is not elevated
compared to samples from the same bottler purchased in
glass packaging (D-G).

3.2 Reproduction test with Potamopyrgus antipodarum

P. antipodarum responds highly sensitively to estrogens:
After 56 days of exposure to 25 ng/l ethinylestradiol
(positive control), the reproductive output of mudsnails
(embryos per female) was more than doubled (211±12.6%)
compared to the negative control group (100±11.6%).
Culturing of P. antipodarum in water bottles filled with
defined culturing water led to a significant increase of
reproduction (139.4±13.9% to 222±12.9%) in all PET
brands of vessels (Fig. 2). In contrast, embryo production
by mudsnails cultured in glass mineral water bottles was
slightly but not significantly enhanced (108.11±14.3% to
131.3±14.5%). Reproduction of P. antipodarum bred in
two brands of plastic bottles (B-PM and E-P, see Fig. 2)
increased only moderately to 140%. Interestingly, we also
did not detect estrogenic activity in mineral water from the
multi-use PET bottles of brand B (B-PM, see Fig. 1). Vice
versa, reproduction of P. antipodarum in brand D PET
vessels (D-P, also reusable) increased significantly to 220±
12.9% (see Fig. 2), whereas in the YES, the mineral water
itself (D-P, see Fig. 1) did not contain higher estrogenicity
when compared to the corresponding glass bottles (D-G).

Simultaneously, the estrogenic potency of water samples
taken from all bottles was investigated in vitro with the
YES. EEQ regularly recorded over the test period were

Brand Material Use Volume (l) Estrogenic activity, EEQ (ng/l)

Mean SEM n

A–G Glass Reusable 1 27.5 2.04 67

A–P PET Non-reusable 1.5 29.4 2.31 71

B–G Glass Reusable 0.7 b.q.l. – 66

B–PC PET Non-reusable 0.5 4.38 1.55 69

B–PM PET Reusable 1 b.q.l. – 70

B–PN PET Non-reusable 1.5 3.23 0.82 70

C–G Glass Reusable 1 73.0 4.99 67

C–P PET Non-reusable 1.5 75.2 5.95 67

D–G Glass Reusable 0.7 2.64 0.65 69

D–P PET Reusable 1 2.65 0.64 69

E–P PET Non-reusable 1.5 26.1 2.12 68

F–P PET Reusable 1.5 18.0 1.57 68

G–P PET Non-reusable 0.5 41.6 2.73 68

H–G Glass Reusable 0.7 b.q.l. – 71

I–G Glass Reusable 0.75 b.q.l. – 69

K–G Glass Reusable 0.7 b.q.l. – 69

L–G Glass Reusable 0.75 b.q.l. – 66

M–G Glass Reusable 0.7 b.q.l. – 66

N–T Tetra Pak Non-reusable 1 43.9 3.22 68

O–T Tetra Pak Non-reusable 2 14.5 1.35 65

Table 1 Properties of the min-
eral water brands tested in the
yeast estrogen screen

b.q.l. below quantification limit
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integrated and compared to the number of embryos
produced in the same bottles. The resulting correlation
(Spearman, p=0.0075, rs=0.479, 30 data pairs) indicates
that, in bottles with high estrogenic potency in vitro,
reproduction of mudsnails was enhanced.

4 Discussion

The presence of endogenous estrogenic compounds in food is
well documented in cases concerned with phytoestrogens and
steroid hormones (Daxenberger et al. 2001; Fritsche and
Steinhart 1999). Furthermore, the contamination of foodstuff
with well-known EDCs like bisphenol A, phthalates, and
alkylphenols is confirmed analytically (McNeal et al. 2000).
Yet, only limited data exists on the total estrogenic burden of
edibles, integrating known and unidentified EDCs as well as
potential mixture effects. Therefore it seems justifiable to put
the estrogenic potencies measured in mineral water in context
with endogenous estrogens found in food and beverages.

Hartmann et al. (1998) proposed that dairy products are
the main source for steroidal estrogens and calculated a
total daily intake of 80–100 ng estrogens per day for adults.
Based on our data, a theoretical daily consumption of 3 l
mineral water (drinking water required to maintain hydra-
tion, Howard and Bartram 2003) would result in a mean
total intake of 54 ng EEQ per day. In a worst case scenario
(3 l of brand C-P), the total daily intake would increase to
226 ng EEQ per day, exceeding the intake of estrogens
naturally found in food (Hartmann et al. 1998) by more
than 100%. In a more recent study, Courant et al. (2007)
analytically determined concentrations of 23 ng/l 17ß-
estradiol in milk. The concentration of natural estrogen in

milk is comparable to the mean hormonal potency we
measured in 20 brands of mineral water (18 ng/l EEQ) and
three times lower than the maximal EEQ detected in one brand
of water (75 ng/l EEQ). Therefore, consumption of mineral
water results in a human exposure to xenoestrogens with at
least the same hormonal potency as steroidal estrogens
naturally occurring in food.

Few authors utilized the YES or other in vitro assays to
assess the total estrogenicity of beverages or foodstuff.
Klinge et al. (2003) detected a maximum 84 ng/l EEQ in red
wine. Promberger et al. (2001) calculated 23–41 ng/l EEQ
for beer, a result that was confirmed by Takamura-Enya et
al. (2003), who detected an estrogenic potency of approx-
imately 30 ng/l EEQ in beer; extracts from soy based food
(miso, tofu, and soy sauce) and coffee also contained EEQ
in low nanogram per liter range. The range of estrogenic
burden we found in several brands of mineral water is
comparable to the hormonal activity of wine, beer, and soy
products, detected with the same in vitro assay. Again, the
distinction is that the abovementioned studies confirmed
naturally occurring phytoestrogens as an endogenous
source of estrogenicity, whereas mineral water does not
contain phytoestrogens.

Using a well-established in vitro assay, we provide first
quantitative data on the estrogenic burden of commercially
available mineral water. The high abundance (60% of all
samples) and potency (mean of 18 ng/l EEQ) of estro-
genicity clearly demonstrates that food obviously lacking
endogenous estrogens significantly contributes to human
exposure with estrogenic compounds. In contrast to estro-
gens naturally occurring in foodstuff and beverages, the
sources of estrogens in water must be exogenous.

From the in vitro data shown in this study, we conclude that
there are three sources for the estrogenic contamination of
mineral water: First of all, the water may be estrogenic by
itself, implying that the untreated groundwater from the spring
contains substances with hormonal potency. So far, there is no
evidence for the presence of intrinsic estrogenicity in water.
Another source of hormonal activity in groundwater may be
the reflux of synthetic estrogens like 17α-ethinylestradiol and
other pharmaceuticals from wastewater discharge. Although
shown for surface water (Cargouet et al. 2004), no clear
evidence for the entry of 17α-ethinylestradiol in groundwater
is available up to now.

A second source of the estrogenic activity of mineral
water is the production process. Especially with regard to
the water samples from springs A and C (see Fig. 1), which
contained a conspicuously high estrogenic burden indepen-
dent of the packaging material, a production-related
contamination with xenoestrogens seems probable. The
presence of several phthalate plasticizers in citrus essential
oils, for example, was attributed to new plastic components
used in the production (Di Bella et al. 2001). Another source

Fig. 2 Number of embryos produced by Potamopyrgus antipodarum
after a 56-day period of culturing in glass and plastic bottles (three
replicates per brand with 20 snails each). Negative control (NC),
positive control (EE2), and samples, n=60. Single star p<0.05, double
star p<0.01, and triple stars p<0.001 as determined by Mann–
Whitney test
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might be residual detergents and disinfectants used for
cleaning the filling system. Guenther et al. (2002) detected
estrogenic nonylphenols in a broad range of foodstuff and
concluded that part of it might originate from nonionic
surfactants used in cleaning agents.

As a third source of xenoestrogens in mineral water, we
propose the migration of EDCs from the packaging
material. The analysis of data according to the packaging
material (Fig. 3a) demonstrates that the estrogenic contam-
ination of mineral water bottled in plastic (PET and Tetra
Pak) is significantly higher compared to that of water
bottled in glass (p<0.001). This implies an influence of the
packaging material: Substances with estrogenic potency
leaching from the plastic packaging could contribute to the
hormonal burden of mineral water reported in this study.
With regard to the four mineral waters that originated from
the same source but were purchased in glass and plastic (A–
D), the lower estrogenicity of the appropriate glass bottled
waters (apart from spring D, see Fig. 1) supports our
hypothesis of estrogenic contamination by the plastic
packaging. The estrogenic burden of water purchased in
Tetra Pak has to be interpreted tentatively since only two
brands were examined due to low market shares. Again,
higher contamination compared to samples from glass
bottles (see Fig. 3 a, p<0.001) could be attributed to the
migration of EDCs from the inner lining of the Tetra Pak
packaging, which consists of a polyethylene plastic film.

To exclude the influence of the first two sources of
xenoestrogens in mineral water (contamination by spring or
production) and to exclusively characterize the estrogenic
potency emerging from the packaging material, we con-
ducted a reproduction test with the New Zealand mudsnail
P. antipodarum. In this study, the prosobranch snail acts as a
sentinel for xenoestrogens. In the current experiment, this is

documented by the positive control with the synthetic estrogen
17α-ethinylestradiol (EE2). After 56 days of exposure to
25 ng/l EE2, the reproduction ofP. antipodarum, expressed as
number of embryos produced per female, was more than
doubled compared to control animals (see Fig. 2).

Other studies emphasize that the sensitivity of P.
antipodarum is not limited to EE2 but applies for a wider
range of EDCs: Jobling et al. (2004) observed effects of
EE2, bisphenol A, and octylphenol on P. antipodarum that
were very similar to the ones shown in this study. Duft et al.
(2003a,b) provide data on xenoestrogens (bisphenol A,
octylphenol, and nonylphenol) as well as on the xenoan-
drogens triphenyltin and tributyltin. Although the mecha-
nism, through which EDCs act on mollusks, is not yet
elucidated (Köhler et al. 2007), many gastropod species are
known to be susceptible to EDC exposure (Oehlmann et al.
2006; Oehlmann et al. 2007).

In the current experiment, breeding of P. antipodarum in
several brands of glass bottles resulted in a slightly
enhanced production of embryos compared to the negative
control group (see Fig. 2), which consisted of inert
Borosilicate glass vessels. Since this difference is not
statistically significant, there is little evidence for the
occurrence of xenoestrogens migrating from the glass
material into the culturing water. In contrast, reproductive
patterns of specimens kept in PET bottles changed distinctly
during the test period: Females cultured in four brands of
plastic bottles produced approximately twice as much
embryos compared to the negative control (90–120%, see
Fig. 2). Again, analysis of data according to the packaging
material reveals a significantly enhanced progeny of P.
antipodarum from the PET group compared to specimens
from the glass group and negative control (p<0.001,
Fig. 3b). Taking into account that the same culturing water

Fig. 3 Estrogenic potencies of mineral water in vitro (a) and
reproduction of Potamopyrgus antipodarum (b). Data were pooled
according to packaging material. a Estrogenic potencies (EEQ)
measured with the yeast estrogen screen. Negative control (NC), n=
226; glass, n=610; PET, n=620; Tetra Pak, n=133. b Number of

embryos produced by Potamopyrgus antipodarum after a 56-day
period of culturing in glass and plastic bottles. Negative control (NC)
and positive control (EE2), n=60; glass, n=240; PET, n=360. Triple
stars p<0.001 as determined by Mann–Whitney test
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was filled in all vessels at the beginning of the experiment,
it is obvious that the observed effects can only be attributed
to xenoestrogen leaching from these plastic bottles. More-
over, the compounds released by the PET material were
potent to trigger estrogenic effects in vivo similar to those
of EE2 at a concentration of 25 ng/l.

A similar observation was made by Howdeshell et al.
(2003): Uterine weight of prepubertal female mice housed
in cages made of polycarbonate increased by 16%
compared to mice from polypropylene cages. Although
this estrogenic effect was not statistically significant, it was
linked to the exposure to bisphenol A leaching from
polycarbonate cages. In contrast to polycarbonates, PET is
believed to be free from bisphenol A. Still, Toyo’oka and
Oshige (2000) detected 3–10 ng/l bisphenol A in several
brands of mineral water from PET bottles but did not
confirm its origin. These results were not confirmed by
Shao et al. (2005), who could not detect bisphenol A in
different beverages from plastic bottles (material not stated)
including mineral water. Nonetheless, estrogenic nonylphe-
nols were detected in both studies in concentrations from
16–465 ng/l. The leaching of p-nonylphenol from plastic
tubes used in the laboratory was first described by Soto et al.
(1991). Because bisphenol A and nonylphenols are ubiqui-
tous, we cannot exclude their presence in mineral water.

The same is true for endocrine-disrupting phthalates:
Despite some claims that phthalates are not used in
manufacturing PET food packaging (Enneking 2006),
Kim et al. (1990) extracted several phthalates from PET
water bottles (among them DEHP, DBP, and DEP). The
migration of DEHP from PET into mineral water was
reported by Biscardi et al. (2003). Casajuana and Lacorte
(2003) monitored several phthalates in mineral water and
found increased concentrations of DMP, DEP, DBP, and
DEHP after storing water in PET bottles for 10 weeks. In a
recent study, Montuori et al. (2008) compared mineral
waters bottled in glass and PET and detected significantly
higher amounts of phthalates (DMP, DEP, DiBP, DBP, and
DEHP) in plastic bottled water. The sum of studied
compounds was thus 12 times higher in water from PET
bottles compared to samples from glass bottles. Taken
together, there is good analytical evidence for the migration
of certain phthalates from PET food packaging materials,
some of them well-known xenoestrogens (Jobling et al.
1995). However, the estrogenicity reported in this study
might also arise from unexpected compounds: Shotyk
et al. (2006) found antimony in up to 30 times higher
concentrations in mineral water from PET compared to
glass bottles and confirmed its leaching from PET (Shotyk
and Krachler 2007), in whose manufacturing antimony
trioxide is used as catalyst. The maximum concentrations
detected in mineral water (1–2 µg/l) have been shown to
exhibit estrogenic activity in vitro (Choe et al. 2003).

The analytical data from the literature suggest that the
observed estrogenic effects reported in this paper cannot be
attributed to one of the compounds alone, owing to the fact
that individual concentrations are too low to be effective.
Since the assays used in this study integrate all xenoestrogens
present in the samples, we propose that there are either potent
estrogenic mixtures causing the in vitro and in vivo effects
(Rajapakse et al. 2002; Silva et al. 2002) or so far
unidentified compounds with strong estrogenic potency.

5 Conclusions

Our findings provide first evidence for a broad contamination
of mineral water with xenoestrogens, typically in the range of
2–40 ng/l EEQ with maximum values of 75 ng/l EEQ.
Consumption of commercially bottled mineral water may
therefore contribute to the overall exposure of humans with
endocrine disruptors. Moreover, it is probable that this
estrogenic contamination originates from plastic food pack-
aging materials because mineral water bottled in PET and
Tetra Pak is more estrogenic than water bottled in glass. This
gives rise to the assumption that additives such as plasticizers
or catalysts migrate from the plastic packaging into the
foodstuff. Though yet unidentified, these substances act as
functionally active estrogens in vitro on the human estrogen
receptor alpha and in vivo in a molluskan model. Therefore,
we may have identified just the tip of the iceberg in that plastic
packaging may be a major source for xenohormone contam-
ination of many other edibles. Still, this study was not
designed to evaluate whether the consumption of plastic
packed nourishments comprehends the risk of endocrine
disruptive effects in humans. It instead provides an insight
into the potential exposure to EDCs due to unexpected sources
of contamination.
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