3 research outputs found

    Translational and Rotational Energy Distributions of NO Photodesorbed from Au(100)

    Get PDF
    We report velocity and internal state distributions of nitric oxide photodesorbed from an Au(100) single crystal using 355 and 266 nm photons. The velocity distributions were measured in all three dimensions independently using our novel 3D-velocity map imaging setup. Combined with the internal energy distributions we reveal two distinct desorption mechanisms for the photodesorption of NO from gold dependent on the photon wavelength. The 355 nm desorption is dominated by a nonthermal mechanism due to excitation of an electron from the gold substrate to the adsorbed NO; this leads to a superthermal and noticeably narrow velocity distribution and a rotational state distribution that positively correlates with the velocity distribution and can be described by a rotational temperature appreciably above the surface temperature. Desorption with 266 nm photons leads to a slower average speed and wider angular distribution and rotational temperatures not too far off the surface temperature. We conclude that in the absence of occupied orbitals in the substrate and unoccupied orbitals on the adsorbed NO separated by 4.7 eV, corresponding to 266 nm; the shorter wavelength desorption is dominated by a thermally activated mechanism

    Adsorption site, orientation and alignment of NO adsorbed on Au(100) using 3D-velocity map imaging, X-ray photoelectron spectroscopy and density functional theory

    Get PDF
    Nitric oxide adsorption on a Au(100) single crystal has been investigated to identify the type of adsorption, the adsorption site, and the orientation and alignment of the adsorbed NO relative to the surface. This was done using a combination of 3D-surface velocity map imaging, near-ambient pressure X-ray photoelectron spectroscopy, and density functional theory. NO was observed to be molecularly adsorbed on gold at ∼200 K. Very narrow angular distributions and cold rotational distributions of photodesorbed NO indicate that NO adsorbs on high-symmetry sites on the Au crystal, with the N-O bond axis close to the surface normal. Our density functional theory calculations show that NO preferentially adsorbs on the symmetric bridge (2f) site, which ensures efficient overlap of the NO π* orbital with the orbitals on the two neighbouring Au atoms, and with the N-O bond axis aligned along the surface normal, in agreement with our conclusions from the rotational state distributions. The combination of XPS, which reveals the orientation of NO on gold, with 3D-surface velocity map imaging and density functional theory thus allowed us to determine the adsorption site, orientation and alignment of nitric oxide adsorbed on Au(100)
    corecore