5,040 research outputs found
Duality in Off-Shell Electromagnetism
In this paper, we examine the Dirac monopole in the framework of Off-Shell
Electromagnetism, the five dimensional U(1) gauge theory associated with
Stueckelberg-Schrodinger relativistic quantum theory. After reviewing the Dirac
model in four dimensions, we show that the structure of the five dimensional
theory prevents a natural generalization of the Dirac monopole, since the
theory is not symmetric under duality transformations. It is shown that the
duality symmetry can be restored by generalizing the electromagnetic field
strength to an element of a Clifford algebra. Nevertheless, the generalized
framework does not permit us to recover the phenomenological (or conventional)
absence of magnetic monopoles.Comment: 18 page
A numerical study of two-photon ionization of helium using the Pyprop framework
Few-photon induced breakup of helium is studied using a newly developed ab
initio numerical framework for solving the six-dimensional time-dependent
Schroedinger equation. We present details of the method and calculate
(generalized) cross sections for the process of two-photon nonsequential
(direct) double ionization at photon energies ranging from 39.4 to 54.4 eV, a
process that has been very much debated in recent years and is not yet fully
understood. In particular, we have studied the convergence property of the
total cross section in the vicinity of the upper threshold (54.4 eV), versus
the pulse duration of the applied laser field. We find that the cross section
exhibits an increasing trend near the threshold, as has also been observed by
others, and show that this rise cannot solely be attributed to an unintended
inclusion of the sequential two-photon double ionization process, caused by the
bandwidth of the applied field.Comment: 7 pages, 3 figure
Asymptotic iteration method for eigenvalue problems
An asymptotic interation method for solving second-order homogeneous linear
differential equations of the form y'' = lambda(x) y' + s(x) y is introduced,
where lambda(x) \neq 0 and s(x) are C-infinity functions. Applications to
Schroedinger type problems, including some with highly singular potentials, are
presented.Comment: 14 page
Discrete Symmetries of Off-Shell Electromagnetism
We discuss the discrete symmetries of the Stueckelberg-Schrodinger
relativistic quantum theory and its associated 5D local gauge theory, a
dynamical description of particle/antiparticle interactions, with monotonically
increasing Poincare-invariant parameter. In this framework, worldlines are
traced out through the parameterized evolution of spacetime events, advancing
or retreating with respect to the laboratory clock, with negative energy
trajectories appearing as antiparticles when the observer describes the
evolution using the laboratory clock. The associated gauge theory describes
local interactions between events (correlated by the invariant parameter)
mediated by five off-shell gauge fields. These gauge fields are shown to
transform tensorially under under space and time reflections, unlike the
standard Maxwell fields, and the interacting quantum theory therefore remains
manifestly Lorentz covariant. Charge conjugation symmetry in the quantum theory
is achieved by simultaneous reflection of the sense of evolution and the fifth
scalar field. Applying this procedure to the classical gauge theory leads to a
purely classical manifestation of charge conjugation, placing the CPT
symmetries on the same footing in the classical and quantum domains. In the
resulting picture, interactions do not distinguish between particle and
antiparticle trajectories -- charge conjugation merely describes the
interpretation of observed negative energy trajectories according to the
laboratory clock.Comment: 26 page
Analysis of chronic rejection and obliterative arteriopathy: Possible contributions of donor antigen-presenting cells and lymphatic disruption
Sequential analysis of changes that lead to chronic rejection was undertaken in an animal model of chronic rejection and obliterative arteriopathy. Brown Norway rats are pretreated with a Lewis bone marrow infusion or a Lewis orthotopic liver allograft and a short course of immunosuppression. They are challenged 100 days later with a Lewis heterotopic heart graft without immunosuppression. The heart grafts in both groups undergo a transient acute rejection, but all rats are operationally tolerant; the heart grafts are accepted and remain beating for more than 100 days. Early arterial remodeling, marked by arterial bromodeoxyuridine incorporation, occurred in both groups between 5 and 30 days during the transient acute rejection. It coincided with the presence of interstitial (but not arterial intimal) inflammation and lymphatic disruption and resulted in mild intimal thickening. Significant arterial narrowing occurred only in the bone-marrow-pretreated rats between 60 and 100 days. It was associated with T lymphocyte and macrophage inflammation of the heart graft that accumulated in the endocardium and arterial intima and adventitia near draining lymphatics. There also was loss of passenger leukocytes from the heart graft, up-regulation of cytokine mRNA and major histocompatibility class II on the endothelium, and focal disruption of lymphatics. In contrast, long-surviving heart grafts from the Lewis orthotopic liver allograft pretreated group are near normal and freedom from chronic rejection in this group was associated with persistence of donor major histocompatibility class-II-positive hematolymphoid cells, including OX62+ donor dendritic cells. This study offers insights into two different aspects of chronic rejection: 1) possible mechanisms underlying the persistent immunological injury and 2) the association between immunological injury and the development of obliterative arteriopathy. Based on the findings, it is not unreasonable to raise the testable hypothesis that direct presentation of alloantigen by donor antigen-presenting cells is required for long-term, chronic-rejection-free allograft acceptance. In addition, chronic intermittent lymphatic disruption is implicated as a possible mechanism for the association between chronic interstitial allograft inflammation and the development of obliterative arteriopathy
Error-correcting code on a cactus: a solvable model
An exact solution to a family of parity check error-correcting codes is
provided by mapping the problem onto a Husimi cactus. The solution obtained in
the thermodynamic limit recovers the replica symmetric theory results and
provides a very good approximation to finite systems of moderate size. The
probability propagation decoding algorithm emerges naturally from the analysis.
A phase transition between decoding success and failure phases is found to
coincide with an information-theoretic upper bound. The method is employed to
compare Gallager and MN codes.Comment: 7 pages, 3 figures, with minor correction
Finite-Connectivity Spin-Glass Phase Diagrams and Low Density Parity Check Codes
We obtain phase diagrams of regular and irregular finite connectivity
spin-glasses. Contact is firstly established between properties of the phase
diagram and the performances of low density parity check codes (LDPC) within
the Replica Symmetric (RS) ansatz. We then study the location of the dynamical
and critical transition of these systems within the one step Replica Symmetry
Breaking theory (RSB), extending similar calculations that have been performed
in the past for the Bethe spin-glass problem. We observe that, away from the
Nishimori line, in the low temperature region, the location of the dynamical
transition line does change within the RSB theory, in comparison with the (RS)
case. For LDPC decoding over the binary erasure channel we find, at zero
temperature and rate R=1/4 an RS critical transition point located at p_c =
0.67 while the critical RSB transition point is located at p_c = 0.7450, to be
compared with the corresponding Shannon bound 1-R. For the binary symmetric
channel (BSC) we show that the low temperature reentrant behavior of the
dynamical transition line, observed within the RS ansatz, changes within the
RSB theory; the location of the dynamical transition point occurring at higher
values of the channel noise. Possible practical implications to improve the
performances of the state-of-the-art error correcting codes are discussed.Comment: 21 pages, 15 figure
Typical Performance of Gallager-type Error-Correcting Codes
The performance of Gallager's error-correcting code is investigated via
methods of statistical physics. In this approach, the transmitted codeword
comprises products of the original message bits selected by two
randomly-constructed sparse matrices; the number of non-zero row/column
elements in these matrices constitutes a family of codes. We show that
Shannon's channel capacity is saturated for many of the codes while slightly
lower performance is obtained for others which may be of higher practical
relevance. Decoding aspects are considered by employing the TAP approach which
is identical to the commonly used belief-propagation-based decoding.Comment: 6 pages, latex, 1 figur
Typical performance of low-density parity-check codes over general symmetric channels
Typical performance of low-density parity-check (LDPC) codes over a general
binary-input output-symmetric memoryless channel is investigated using methods
of statistical mechanics. Theoretical framework for dealing with general
symmetric channels is provided, based on which Gallager and MacKay-Neal codes
are studied as examples of LDPC codes. It has been shown that the basic
properties of these codes known for particular channels, including the property
to potentially saturate Shannon's limit, hold for general symmetric channels.
The binary-input additive-white-Gaussian-noise channel and the binary-input
Laplace channel are considered as specific channel noise models.Comment: 10 pages, 4 figures, RevTeX4; an error in reference correcte
- …