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Error-orreting ode on a atus: a solvable modelR. Viente1, D. Saad1 and Y. Kabashima21 The Neural Computing Researh Group, Aston University, Birmingham B4 7ET, UK2 Department of Computational Intelligene and Systems Siene, Tokyo Institute ofTehnology, Yokohama 2268502, Japan(reeived ; aepted )PACS. 89.90+n { Other areas of general interest to physiists..PACS. 89.70+ { Information Theory.PACS. 05.50+q { Lattie theory and statistis; Ising problems.Abstrat. { An exat solution to a family of parity hek error-orreting odes is provided bymapping the problem onto a Husimi atus. The solution obtained in the thermodynami limitreovers the replia symmetri theory results and provides a very good approximation to �nitesystems of moderate size. The probability propagation deoding algorithm emerges naturallyfrom the analysis. A phase transition between deoding suess and failure phases is foundto oinide with an information-theoreti upper bound. The method is employed to ompareGallager and MN odes.

The theory of error-orreting odes onentrates on the eÆient introdution of redundanyto given messages for proteting the information ontent against orruption. The theoretialfoundations of this area were laid by Shannon's seminal work [1℄ and have been developingever sine (see [2℄ and referenes therein). One of the main results obtained in this �eld isthe elebrated hannel oding theorem stating that there exists a ode suh that the averagemessage error probability PE , when maximum likelihood deoding is used, is upper boundedby PE < e�M E(R), where M is the length of the enoded transmission and R = ( messageinformation ontent )=M is the ode rate. The exponent E(R) is positive for ode rates belowthe hannel apaity, orresponding to the maximal mutual information between the reeivedand the transmitted signals, and vanishes above it. For rates R below the hannel apaity,ommonly termed Shannon's bound, the error probability an be made arbitrarily small.The hannel oding theorem is based on unstrutured random odes and impratial de-oders as maximum likelihood [2℄ or typial sets [3℄. In the last �fty years several pratialmethods have been proposed and implemented, but none has been able to saturate Shannon'sbound. In 1963 Gallager [4℄ proposed a oding sheme involving sparse linear transformationsof binary messages that was forgotten soon after, in part due to the suess of onvolutionalodes [2℄ and the omputational limitations of the time. Gallager odes have been reentlyredisovered by MaKay and Neal (MN) that independently proposed a losely related ode [3℄.This almost oinided with the breakthrough disovery of the high-performane turbo odes [5℄.Typeset using EURO-TEX
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2 EUROPHYSICS LETTERSVariations of Gallager odes have displayed performane omparable (and sometimes superior)to turbo odes [6℄, qualifying them as state-of-the-art odes.Statistial physis has been applied to the analysis of error-orreting odes as an alternativeto information theory methods yielding some new interesting diretions and suggesting newhigh-performane odes [7℄. Sourlas was the �rst to relate error-orreting odes to spin glassmodels [8℄, showing that the Random Energy Model (REM)[9, 10, 11℄ an be thought of asan ideal ode, apable of saturating Shannon's bound at vanishing ode rates. This workwas extended reently to the ase of �nite ode rates [12, 13℄ and has been further developedfor analysing MN odes of various strutures [14, 15, 16℄. All of the analyses mentionedabove, as well as the reent turbo ode analysis [17℄, relied on the replia approah under theassumption of replia symmetry. It is also worthwhile mentioning a di�erent approah, usedin the analysis of onvolutional odes [18℄, of employing the transfer-matrix formalism andpower series expansions. However, to date, the only model that an be analysed exatly is theREM that orresponds to an impratial oding sheme of a vanishing ode rate.In this letter we present an exat analysis to the performane of Gallager error-orretingodes based on a generalisation of Bethe latties known as the Husimi atus [19℄. Wesolve the model reovering results obtained by the replia symmetri theory and �nding thenoise level that orresponds to the phase transition between perfet deoding and a deodingfailure phase, this appears to oinide with existing information-theoreti upper bounds. Weexperimentally show that the solution aurately approximates Gallager odes of moderatesize. We also show that the probability propagation (PP) deoding algorithm emerges naturallyfrom this framework allowing for the analysis of the pratial deoding performane. Finally,we summarise the di�erenes between Gallager and MN odes, whih are somewhat obsurein the information theory literature but beome expliit in this framework.We will onentrate here on a simple ommuniation model whereby messages are repre-sented by binary vetors and are ommuniated through a Binary Symmetri Channel (BSC)where unorrelated bit ips appear with probability f . A Gallager ode is de�ned by a binarymatrix A = [C1 j C2℄, onatenating two very sparse matries known to both sender andreeiver, with C2 (of dimensionality (M �N)� (M �N)) being invertible; the matrix C1 isof dimensionality (M �N)�N .Enoding refers to the prodution of an M dimensional binary ode word t 2 f0; 1gM(M > N) from the original message � 2 f0; 1gN by t = GT � (mod 2), where all operationsare performed in the �eld f0; 1g and are indiated by (mod 2). The generator matrix is G =[I j C�12 C1℄ (mod 2), where I is the N �N identity matrix, implying that AGT (mod 2) = 0and that the �rst N bits of t are set to the message �. In regular Gallager odes the numberof non-zero elements in eah row of A is hosen to be exatly K. The number of elementsper olumn is then C = (1�R)K, where the ode rate is R = N=M (for unbiased messages).The enoded vetor t is then orrupted by noise represented by the vetor � 2 f0; 1gM withomponents independently drawn from P (�) = (1 � f)Æ(�) + fÆ(� � 1). The reeived vetortakes the form r =GT � + � (mod 2).Deoding is arried out by multiplying the reeived message by the matrix A to produethe syndrome vetor z = Ar = A� (mod 2) from whih an estimate b� for the noise vetoran be produed. An estimate for the original message is then obtained as the �rst N bits ofr + b� (mod 2). The Bayes optimal estimator (also known as marginal posterior maximiser,MPM) for the noise is de�ned as b�j = argmax�jP (�j j z). The performane of this estimatoran be measured by the probability of bit error pb = 1 � 1=M PMj=1 Æ[b�j ; �j ℄, where Æ[; ℄ isKroneker's delta. Knowing the matries C2 and C1, the syndrome vetor z and the noise
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τFig. 1. { First step in the onstrution of Husimi atus with K = 3 and onnetivity C = 4.level f it is possible to apply Bayes' theorem and ompute the posterior probabilityP (� j z) = 1Z� [z = A� (mod 2)℄P (� ); (1)where �[X ℄ is an indiator funtion providing 1 if X is true and 0 otherwise. To obtain theMPM one has to ompute the marginal posterior P (�j j z) =Pi6=j P (� j z), whih in generalrequires O(2M ) operations, and thus beomes impratial for long messages. To solve thisproblem one an use the sparseness of A to design algorithms that require O(M) operationsto perform the same task. One of these methods is the probability propagation algorithm (PP),also known as belief propagation, sum-produt algorithm (see [20℄) or generalised distributivelaw [21℄.The onnetion to statistial physis beomes lear when the �eld f0; 1g is replaed by Isingspins f�1g and mod 2 sums by produts [8℄. The syndrome vetor aquires the form of amulti-spin oupling J� = Qj2L(�) �j where j = 1; � � � ;M and � = 1; � � � ; (M � N). The Kindies of nonzero elements in the row � of A are given by L(�) = fj1; � � � ; jKg, and in aolumn l are given by M(l) = f�1; � � � ; �Cg.The posterior (1) an be written as the Gibbs distribution [14, 15℄:P (� j J ) = 1Z lim�!1 exp [��H�(� ;J )℄ (2)H�(� ;J ) = �M�NX�=1 0�J� Yj2L(�) �j � 11A� F� MXj=1 �j :The external �eld orresponds to the prior probability over the noise and has the formF = atanh(1 � 2f). Note that the Hamiltonian itself depends on the inverse temperature�. The disorder is trivial and an be gauged as J� 7! 1 by using �j 7! �j�j . The resultingHamiltonian is a multi-spin ferromagnet with �nite onnetivity in a random �eld hj =��1F�j . The deoding proess orresponds to �nding zero temperature loal magnetisationsmj = lim�!1h�ji� and alulating estimates as b�j = sgn(mj).In the f�1g representation the probability of bit error, aquires the formpb = 12 � 12M MXj=1 �j sgn(mj); (3)onneting the ode performane with the omputation of loal magnetisations.A Husimi atus with onnetivity C is generated starting with a polygon ofK verties withone Ising spin in eah vertex (generation 0). All spins in a polygon interat through a singleoupling J� and one of them is alled the base spin. In �gure 1 we show the �rst step in theonstrution of a Husimi atus, in a generi step the base spins of the n�1 generation polygons,



4 EUROPHYSICS LETTERSnumbering (C � 1)(K � 1), are attahed to K � 1 verties of a generation n polygon. Thisproess is iterated until a maximum generation nmax is reahed, the graph is then ompletedby attahing C unorrelated branhes of nmax generations at their base spins. In that wayeah spin inside the graph is onneted to exatly C polygons. The loal magnetisation at theentre mj an be obtained by �xing boundary (initial) onditions in the 0-th generation anditerating reursion equations until generation nmax is reahed. Carrying out the alulationin the thermodynami limit orresponds to having nmax � lnM generations and M !1.The Hamiltonian of the model has the form (2) where L(�) denotes the polygon � of thelattie. Due to the tree-like struture, loal quantities far from the boundary an be alulatedreursively by speifying boundary onditions. The typial deoding performane an thereforebe omputed exatly without resorting to replia alulations [22℄.We adopt the approah presented in [19℄ where reursion relations for the probabilitydistribution P�k(�k) for the base spin of the polygon � is onneted to (C � 1)(K � 1)distributions P�j(�j), with � 2 M(j) n � (all polygons linked to j but �) of polygons inthe previous generation:P�k(�k) = 1N Trf�jg exp24�0�J��k Yj2L(�)nk �j � 11A+ F�k35 Y�2M(j)n� Yj2L(�)nk P�j(�j); (4)where the trae is over the spins �j suh that j 2 L(�) n k.The e�etive �eld bx�j on a base spin j due to neighbours in polygon � an be written as :exp (�2bx�j) = e2F P�j(�)P�j(+) ; (5)Combining (4) and (5) one �nds the reursion relation:exp (�2bx�k) = Trf�jg exp h��J�Qj2L(�)nk �j +Pj2L(�)nk(F +P�2M(j)n� bx�j)�jiTrf�jg exp h+�J�Qj2L(�)nk �j +Pj2L(�)nk(F +P�2M(j)n� bx�j)�ji : (6)By omputing the traes and taking � !1 one obtains:bx�k = atanh24J� Yj2L(�)nk tanh(F + X�2M(j)n� bx�j)35 (7)The e�etive loal magnetisation due to interations with the nearest neighbours in one branhis given by bm�j = tanh(bx�j). The e�etive loal �eld on a base spin j of a polygon � due to C�1branhes in the previous generation and due to the external �eld is x�j = F +P�2M(j)n� bx�j ;the e�etive loal magnetisation is, therefore, m�j = tanh(x�j). Equation (7) an then berewritten in terms of bm�j and m�j and the PP equations [3, 12, 20℄ an be reovered:m�k = tanh0�F + X�2M(j)n� atanh (bm�k)1A bm�k = J� Yj2L(�)nkm�j (8)One the magnetisations on the boundary (0-th generation) are assigned, the loal mag-netisation mj in the entral site is determined by iterating (8) and omputing :mj = tanh0�F + X�2M(j) atanh (bm�j)1A (9)
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Fig. 2. { (a) Mean normalised overlap between the atual noise vetor � and deoded noise b� forK = 4and C = 3 (therefore R = 1=4). Theoretial values (2), experimental averages over 20 runs for odeword lengths M = 5000 (�) and M = 100 (full line). (b) Transitions for K = 6. Shannon's bound(dashed line), information theory upper bound (full line) and thermodynami transition obtainednumerially (Æ). Theoretial (3) and experimental (+,M = 5000 averaged over 20 runs) PP deodingtransitions are also shown. In both �gures, symbols are hosen larger than the error bars.The free energy an be obtained by integration as (8) represents extrema of the free energy[15, 16, 23℄.By applying the gauge transformation J� 7! 1 and �j 7! �j�j , assigning the probabilitydistributions P0(x) to boundary �elds and averaging over random loal �elds F� one obtainsfrom (7) the reursion relation in the spae of probability distributions P (x) [23℄:Pn(x) = Z C�1Yl=1 dbxl bPn�1(bxl) *Æ "x� F� � C�1Xl=1 bxl#+�bPn�1(bx) = Z K�1Yj=1 dxj Pn�1(xj) Æ 24bx� atanh0�K�1Yj=1 tanh(xj)1A35 ; (10)where Pn(x) is the distribution of e�etive �elds at the n-th generation due to the previousgenerations and external �elds, in the thermodynami limit the distribution far from theboundary will be P1(x) (generation n!1). The loal �eld distribution at the entral site isomputed by replaing C � 1 by C in (10), taking into aount C polygons in the generationjust before the entral site, and inserting the distribution P1(x). Equations (10) are identialto those obtained by the replia symmetri theory as in [14, 15, 16℄.By setting initial (boundary) onditions P0(x) and numerially iterating (10), for C � 3 onean �nd, up to some noise level fs, a single stable �xed point at in�nite �elds, orrespondingto a totally aligned state (suessful deoding). At fs a bifuration ours and two other �xedpoints appear, stable and unstable, the former orresponding to a misaligned state (deodingfailure). This situation is idential to that one observed in [14, 15, 16℄. In terms of theloal �elds distribution Pn(x), the aligned state orresponds to a runaway wave travelling tox(n)!1 with n being the time variable. The misaligned state orresponds to a stable waveloated at x(n) � O(1). Representing the distributions (10) by the �rst ummulants only, onean obtain a rough approximation in terms of one dimensional maps showing a bifuration atsome noise level ~fs, this approah will be further exploited elsewhere.The pratial PP deoding is performed by setting initial onditions as m�j = 1 � 2f to



6 EUROPHYSICS LETTERSTable I. { Gallager versus MN odes Gallager MNdynamial variables M N+Monstraints M-N Munbiased messages oding for all K K =1,2Shannon's bound K!1 K� 3 and unbiased messagesorrespond to the prior probabilities and iterating (8) until stationarity or a maximum numberof iterations is attained [3℄. The estimate for the noise vetor is then produed by omputingb�j = sign(mj). At eah deoding step the system an be desribed by histograms of thevariables (8), this is equivalent to iterating (10) (a similar idea was presented in [3, 6℄). Belowfs the proess always onverges to the suessful deoding state, above fs it onverges to thesuessful deoding only if the initial onditions are �ne tuned; in general the proess onvergesto the failure state. In Fig.2a we show the theoretial mean overlap between atual noise � andthe estimate b� as a funtion of the noise level f as well as results obtained with PP deoding.Information theory provides an upper bound for the maximum attainable ode rate byequalising the maximal information ontents of the syndrome vetor z and of the noise estimateb� [3, 16℄. The thermodynami phase transition obtained by �nding the stable �xed points of(10) and their free energies interestingly oinides with this upper bound within the preisionof the numerial alulation. Note that this predited performane is impratial as it requiresO(2M ) operations for an exhaustive searh for the global minimum of the free energy. InFig.2b we show the thermodynami transition for K = 6 ompared with the upper bound,Shannon's bound and fs values.The geometrial struture of a Gallager ode de�ned by the matrix A an be represented bya bipartite graph (Tanner graph) [20℄ with bit and hek nodes. Eah olumn j of A representsa bit node and eah row � represents a hek node, A�j = 1 means that there is an edge linkingbit j to hek �. It is possible to show [24℄ that for a random ensemble of regular odes, theprobability of ompleting a yle after walking l edges starting from an arbitrary node is upperbounded by P [l;K;C;M ℄ � l2Kl=M . It implies that for very large M only yles of at leastorder lnM survive. In the thermodynami limit M !1 the probability P [l;K;C;M ℄! 0 forany �nite l and the bulk of the system is e�etively tree-like. By mapping eah hek node toa polygon with K bit nodes as verties, one an map a Tanner graph into a Husimi lattie thatis e�etively a tree for any number of generations of order less than lnM . It is experimentallyobserved that the number of iterations of (8) required for onvergene does not sale withthe system size, therefore, it is expeted that the interior of a tree-like lattie approximatesa Gallager ode with inreasing auray as the system size inreases. Fig.2a shows that theapproximation is fairly good even for sizes as small as M = 100. Note that although theloal magnetisations mj for a loopy graph are not generally expeted to onverge to the valuesomputed in a tree, sgn(mj) seems to do so. A thorough disussion on this respet for somespei� graphial models an be found in [25℄.In [3℄ MaKay and Neal introdued a variation on Gallager odes termed MN odes. Themain di�erene between these odes is that for MN odes the syndrome vetor ontains alsoinformation on the original message in the form z = Cs�+Cn�. The message itself is diretlyestimated and there is no need for reovering the noise vetor. MaKay has formulated andproved a number of theorems simultaneously for both odes using the fat that if both messageand noise are sampled from the same distribution, these odes an be formulated as the same
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