4 research outputs found

    Manufacturing Process of High Performance–Low Cost Composite Structures for Light Sport Aircrafts

    No full text
    This work describes the technological and scientific efforts on designing, manufacturing and testing validation for high performance-low cost composite structures for Light Sport Aircrafts (LSA). A Mexican initiative to conceive, manufacture and assembly a Light Sport Aircraft has been developed by using Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA) and Liquid Composite Manufacturing (LCM). These consolidated techniques are used to characterize novel approaches to manufacturing and assembly carbon-fiber based structural components. As large structures are manufactured via Vacuum Assisted Resin Infusion (VARI), impregnation strategies are studied to minimize inner flaws and also to improve the manufacturing time and surface quality of each component. The first case of study, to validate this methodology, involves non-structural components such as the cowling. Control surfaces (ailerons, rudder, elevator and flaps) have been manufactured, each of them having common issues but also unique challenges. As an example, a second case of study, the aileron main beam is analyzed. Furthermore, test portfolio will be developed with the goal to perform 1-to-1 scale mechanical tests for validation in compliance with ASTM standards

    Innovation in Aircraft Cabin Interior Panels. Part II: Technical Assessment on Replacing Glass Fiber with Thermoplastic Polymers and Panels Fabricated Using Vacuum Forming Process

    No full text
    The manufacturing process of the aircraft cabin interior panels is expensive and time-consuming, and the resulting panel requires rework due to damages that occurred during their fabrication. The aircraft interior panels must meet structural requirements; hence sandwich composites of a honeycomb core covered with two layers of pre-impregnated fiberglass skin are used. Flat sandwich composites are transformed into panels with complex shapes or geometries using the compression molding process, leading to advanced manufacturing challenges. Some aircraft interior panels are required for non-structural applications; hence sandwich composites can be substituted by cheaper alternative materials and transformed using disruptive manufacturing techniques. This paper evaluates the feasibility of replacing the honeycomb and fiberglass skin layers core with rigid polyurethane foams and thermoplastic polymers. The results show that the structural composites have higher mechanical performances than the proposed sandwich composites, but they are compatible with non-structural applications. Sandwich composite fabrication using the vacuum forming process is feasible for developing non-structural panels. This manufacturing technique is fast, easy, economical, and ecological as it uses recyclable materials. The vacuum forming also covers the entire panel, thus eliminating tapestries, paints, or finishes to the aircraft interior panels. The conclusion of the article describes the focus of future research
    corecore