3,526 research outputs found

    Adsorption and desorption kinetics of gallium atoms on 6H-SiC(0001) surfaces

    Get PDF
    Gallium (Ga) surface adsorption and desorption kinetics on 6H-SiC(0001) are investigated using reflection high-energy electron diffraction. It is found that for Ga adsorption, a wetting layer bonds strongly to the SiC(0001) surface. Additional Ga atoms form droplets on top of the wetting layer. The Ga droplets behave like a metallic liquid. The activation energies for desorption are determined to be 3.5 eV for Ga in the wetting layer and 2.5 eV for Ga in the droplets. It is further found that the desorption of Ga atoms from the wetting layer follows a zero-order kinetics, i.e., the desorption rate is independent of the number of adsorbed atoms. ©2000 The American Physical Society.published_or_final_versio

    Observation of 'ghost' islands and surfactant effect of surface gallium atoms during GaN growth by molecular beam epitaxy

    Get PDF
    GaN (0001) films grown by molecular beam epitaxy (MBE) were studied using scanning tunneling microscopy (STM). 'Ghost' islands were observed on surfaces grown under excess Ga conditions. These ghost islands were associated to a metastable, intermediate nucleation state of the surface.published_or_final_versio

    Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy

    Get PDF
    GaN exists in both wurtzite and zinc-blende phases and the growths of the two on its (0001) or (111) surfaces are achieved by choosing proper deposition conditions of molecular-beam epitaxy (MBE). At low substrate temperatures but high gallium fluxes, metastable zinc-blende GaN films are obtained, whereas at high temperatures and/or using high nitrogen fluxes, equilibrium wurtzite phase GaN epilayers resulted. This dependence of crystal structure on substrate temperature and source flux is not affected by deposition rate. Rather, the initial stage nucleation kinetics plays a primary role in determining the crystallographic structures of epitaxial GaN by MBE. © 2006 American Institute of Physics.published_or_final_versio

    A study of Inx Ga1-x N growth by reflection high-energy electron diffraction

    Get PDF
    Epitaxial growth of Inx Ga1-x N alloys on GaN (0001) by plasma-assisted molecular-beam epitaxy is investigated using the in situ reflection high-energy electron-diffraction (RHEED) technique. Based on RHEED pattern changes over time, the transition of growth mode from two-dimensional (2D) nucleation to three-dimensional islanding is studied for various indium compositions. RHEED specular-beam intensity oscillations are recorded during the 2D wetting-layer growth, and the dependences of the oscillation period/frequency on the substrate temperature and source flux are established. By measuring the spacing between diffraction spots in RHEED, we also estimated indium composition, x, in alloys grown under different flux combinations. Incorporation coefficients of both gallium and indium are derived. Possible surface segregation of indium atoms is finally examined. © 2005 American Institute of Physics.published_or_final_versio

    Initial stage of GaN growth and its implication to defect formation in films

    Get PDF
    In situ scanning tunneling microscopy (STM) observations of initial growth processes of GaN by molecularbeam epitaxy reveal important differences between growth on vicinal versus flat SiC(0001) substrates. Based on stop-growth STM studies, we explain why there are orders of magnitude reductions in the density of threading screw dislocations in the vicinal films. It is shown that on vicinal surfaces, three-dimensional (3D) islands develop into a characteristic shape. The islands coalesce much sooner than on flat surfaces. Consequently, fewer defects are created at their boundaries.published_or_final_versio

    Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire

    Get PDF
    Stress and its effects on optical properties of GaN epilayers grown in Si(111), 6H-SiC(0001), and c-plane sapphire were investigated. Large tensile stress was present in GaN epilayers grown on Si and 6H-SiC, and a small compressive stress appeared in the film grown on sapphire. The results showed that the thermal mismatch between the epilayers and the substrates plays a major role in determining the residual strain in the films.published_or_final_versio

    Coherent and dislocated three-dimensional islands of Inx Ga1-x N self-assembled on GaN(0001) during molecular-beam epitaxy

    Get PDF
    Molecular-beam epitaxy of Inx Ga1-x N alloy on GaN(0001) is investigated by scanning tunneling microscopy. The Stranski-Krastanov mode of growth of the alloy is followed, where the newly nucleated three-dimensional islands are initially coherent to the underlying GaN and the wetting layer, but then become dislocated when grown bigger than about 20 nm in the lateral dimension. Two types of islands show different shapes, where the coherent ones are cone shaped and the dislocated ones are pillar like, having flat-tops. Within a certain range of material coverage, the surface contains both coherent and dislocated islands, showing an overall bimodal island-size distribution. The continued deposition on such surfaces leads to the pronounced growth of dislocated islands, whereas the sizes of the coherent islands change very little. © 2005 The American Physical Society.published_or_final_versio

    Growth mode and strain evolution during InN growth on GaN(0001) by molecular-beam epitaxy

    Get PDF
    The plasma-assisted molecular-beam epitaxy technique was used to study the epitaxial growth of InN on GaN. A relationship between film growth mode and the deposition condition was established by combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). The sustained RHEED intensity oscillations were recorded for 2D growth while 2D nucleation islands were revealed by STM. Results showed less than three oscillation periods for 3 D growth, indicating the Strnski-Krastanov (SK) growth mode of the film.published_or_final_versio

    InN Island shape and its dependence on growth condition of molecular-beam epitaxy

    Get PDF
    The three-dimensional (3D) island shapes of the InN and its dependence on growth conditions of molecular-beam epitaxy (MBE) were analyzed. The islands were dislocated and the strain in an island depended on its size. The pillar-shaped islands with low aspect ratios represented the equilibrium shape, and the pyrimidal islands with higher aspect ratios were limited by kinetics during MBE growth. The decreasing trend of island aspect ratio with respect to island size was attributed to gradual relaxation of residual strain in dislocated islands.published_or_final_versio

    Anisotropic step-flow growth and island growth of GaN(0001) by molecular beam epitaxy

    Get PDF
    GaN(0001) thin films are grown using radio frequency plasma assisted molecular beam epitaxy. By changing the growth temperature, anisotropic growth rate behavior is observed in both the step-flow growth mode and the 2D island growth mode. Tunneling scanning microscopy reveals, in the step-flow growth mode, strong influences from the growth anisotropy on the shape of the terrace edges, resulting in striking differences between hexagonal and cubic films. In the 2D nucleation growth mode, triangularly shaped islands are formed. The significance of growth anisotropy to growing high quality GaN films is discussed.published_or_final_versio
    corecore