research

Coherent and dislocated three-dimensional islands of Inx Ga1-x N self-assembled on GaN(0001) during molecular-beam epitaxy

Abstract

Molecular-beam epitaxy of Inx Ga1-x N alloy on GaN(0001) is investigated by scanning tunneling microscopy. The Stranski-Krastanov mode of growth of the alloy is followed, where the newly nucleated three-dimensional islands are initially coherent to the underlying GaN and the wetting layer, but then become dislocated when grown bigger than about 20 nm in the lateral dimension. Two types of islands show different shapes, where the coherent ones are cone shaped and the dislocated ones are pillar like, having flat-tops. Within a certain range of material coverage, the surface contains both coherent and dislocated islands, showing an overall bimodal island-size distribution. The continued deposition on such surfaces leads to the pronounced growth of dislocated islands, whereas the sizes of the coherent islands change very little. © 2005 The American Physical Society.published_or_final_versio

    Similar works