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Epitaxial growth of INN on GakD001) by plasma-assisted molecular-beam epitaxy is investigated
over a range of growth parameters including source flux and substrate temperature. Combining
reflection high-energy electron diffractitRHEED) and scanning tunneling microscof§TM), we
establish a relationship between film growth mode and the deposition condition. Both
two-dimensional2D) and three-dimension&BD) growth modes of the film are observed. For 2D
growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation
islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski—
Krastanov (SK) growth mode of the film. Simultaneous measurementgretiprocal lattice
constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the
first bilayer (BL) deposition and almost completes after 2—4 BLs. For SK growth, 3D islanding
initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are
likely strain free. © 2002 American Institute of Physic§DOI: 10.1063/1.1523638

In optoelectronic and microelectronic applications of of 0.03—0.1 bilayergBLs) s* (i.e., 0.078-0.26 As' for
group-lll nitrides, heterostructures incorporating InGaN andGaN). Our experiments suggest that growth mode is not sig-
GaN epilayers are important ingredient in, e.g., lasers andificantly affected by the absolute values of the flux, whereas
high-speed transistots. Due to some inherent problems as- the ratio between In and N fluxes has a dramatic effect on
sociated with lattice mismatch and film stability, etc., het-morphology and film growth mode. Prior to InN deposition,
eroepitaxial growth of high quality InGaN on GaN has beena GaN buffer layer of about Ium thick is grown on
shown difficult®* For instance, new defects form in epitaxial SiC(0001)-§3 xv3)R30° at temperatures 600—650 °C and
InGaN films while In composition also fluctuatesThree-  under the excess-Ga flux condition (Ga&f®). This proce-
dimensional(3D) growth mode induced by strain leads to dure results in an atomically flat GaN surface showing the
rough surfaces, while the 3D islands may also be useful foGa polarity? Furthermore, the surface is known to be cov-
realizing quantum dots.Depending on application, both ered by two layers of Ga atom$To desorb such excess Ga
two-dimensional(2D) and three-dimensional morphologies layers, the sample is briefly annealed in N fligtosing the
are desirable, so it is important to establish conditions undeGa source shuttgr during which the RHEED patterns
which the desired morphology is achieved and to learn thghange from “1x1,” typical for a Ga-covered Gaf®001)
mechanisms by which strain in film is accommodated or resurface, to “2x2” indicating a Ga-deficient surfac&.Im-
lieved. mediately afterwards, the substrate temperature is lowered to

Despite recent research on InGaN alloys, less is knowi350—450 °C and InN deposition is followed. RHEED specu-
regarding epitaxial growth of binary InN on G&N?In this  |ar beam intensity is recorded, at the same time RHEED
letter, we report on the growth behavior of InN on GaN patterns in th¢ 1100] azimuth and the spacing betwe@1)
during molecular beam epitaxMBE). Specifically, we re- and (07) diffraction streaks are monitored. The RHEED op-
veal a dependence of growth mode on the deposition conderates at 10 kV with an incident angle of 0.4°, corresponding
tion (temperature and flyxand show strain evolution as to the out-of-phase diffraction condition. Thermally
growth proceeds. quenched surfaces of InN are examined by an ultrahigh

The MBE system is equipped with a radio-frequencyyacuum scanning tunneling microscoféHV-STM) operat-
(13.56 MH2 plasma unitOxford Applied Research, CARS- jng under the constant current mode and at room tempera-
25), generating reactive nitrogel) speciesatoms or ions  ture. For all STM measurements, the sample bias2s0 V
from N, gas. Knudsen effusion cells are used for elementahngd the tunneling current is set at 0.1 nA.
sources such as galliug®a) and indium(in). The effective Figure 1 shows the RHEED intensity oscillations during
flux of the reactive nitrogen species is in the range ofjnN growth on GaN at@ 450 °C and(b) 370 °C, respec-
0.68-2.25¢10" cm ?s*, giving rise to a film growth rate  ively. For (a), In/N flux ratio is 1.5 whereas fab), it is 0.6.
RHEED intensity oscillation during homoepitaxial growth of
aAuthor to whom correspondence should be addressed; electronic mai3aN is also given in Fig. Itrace ¢ for comparisory. From

mhxie@hkusua.hku.hk the figure, two different growth behaviors of InN can be

Ypermanent address: Institute of Semiconductors, Chinese Academy of Scig: .+ ; .
ences, Beijing 100083, People’s Republic of China. CdiStanUIShEd' 2D layer-by-layer growth fo(a) and

®Present address: Department of Physics and Materials Science, City UnﬁtranSki_KraStano‘(S_K) mode for (b). _Th? forme_r is evi-
versity of Hong Kong, Kowloon, Hong Kong. denced by the sustained RHEED oscillations while the latter
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FIG. 1. RHEED specula0,0) beam intensity oscillations during heteroepi-
taxial growth of InN on GaN afa) T¢,;=450 °C, In/N flux ratio~1.5 and
(b) 370 °C and In/N ratio~0.6, respectively(c) represents RHEED oscil-
lations during homoepitaxy of GaN at,,=450 °C, and Ga/N ratio-2.

FIG. 3. Evolution of strain as a function of InN film thickness, calculated
from the spacingl (see insetbetween(01) and (0] diffraction streaks of
RHEED for (a) 2D and(b) SK growth, respectively. The inset show time
evolution of thed and the RHEED patterns of the starting GaN and finishing
o o ) InN surfaces. The solid line in one of the RHEED images indicates the
is indicated by the initial layer-by-layer growtRHEED in- location where thel is measured.

tensity oscillatesfollowed by 3D islandinggRHEED inten-
sity drops continuously By changing the flux and tempera-
ture over a wide range of values, we establish that the S

mode is followed over all but one condition, i.e., under high

n excess-N flux (In/N-0.6). From the image, one observes
that 3D islands are well developed, which are hexagonal pil-
. o lars with average height and lateral width being 5 and 84 nm,
In flux (In/N>1) andhigh substrate temperatue 420 °G. respectively. It is, however, noted that the shape of 3D is-

Figure 2a) _s_hows a STM image of e_l_surface followlng 7'5. lands is affected by the flux of MBE. Mound-like islands are
BLs deposition under the latter condition. From the image, it . .
also obtainable if lower fluxes are used.

's seen that a single BL high, triangularly shaped islands The observation of sustained 2D growth of InN film on

populate the entire surface. The triangular island shape is d . . .
. . aN is surprising, as the system represents a large lattice-
to growth anisotropy of step edges of a wurtzite fithihe : . . . .
. . . . i .mismatch(~10%), in which case, 3D islanding would be
orientations of islands on adjacent terraces are opposite while . o
. . preferred  from  both  kinetid and  equilibrium
on the same terrace, they are the same. This morphology is'a

. . 6 .-
direct consequence of the hcp stacking of the lattice, Congon5|derat|oné. In fact, 2D growth of INN has been previ

\ 6
firming that the deposited InN layer is of pure wurtzite ously observed by Nenherget al,” however, there are also

phase'! Another observation in Fig.(8) is the presence of reports of the SK mode for the same systefiithis study

. ) . . eveals a surprising dependence of growth mode on the MBE
small pits. They are either inverted pyramids or hexagonal ” : . = )

. o condition, which explains the conflicting reports of the litera-
cones. Pit formation in InGaN layer has been reported pre;

) ; : 3 ture. In addition, the dependence of growth mode on MBE
viously and also studied theoreticalfy.” It was suggested condition points to a kinetic origin of film growth mode,

that such pits could be initiated by threading dislocations or : . : . o
stacking mismatch boundaries in fith.By counting the though the detail mechanism subjects to further investiga

L : . tion.
number .Of pIts in |ma%e, V!ez estlr_nate_ the de_n3|ty Of.SUCh Having established film growth mode and morphology,
defects is about 210'° cm™2, which is consistent with . S .
. . we now turn our attention to the strain in film and its evolu-
transmission electron microscopy result for a GaN la§er. .. .
) . tion as growth proceeds. To this end, the spadrimptween
Samples following the SK growth mode are also examine . S . .
. A he neighboring integral diffraction streaks, namglyl) and
by STM. An example of such a surface is given in Fi¢h)2 P . : .
. . o . (0,1) beams, of the RHEED is monitored. Obvioughyep-
which was prepared by growing 18 BLs InN at 350 °C using . . . !
resents the reciprocal of in-plane lattice parameter. Figure 3
shows, for both(a) 2D and (b) SK cases, the variation of
strainf as a function of thénomina) thickness of deposited
InN. The inset presents the evolution @fas a function of
growth time and the RHEED patterns obtained from the
starting GaN and finishing InN surfaces. The strhia cal-
culated according to  f=(apn—aep)/ann=[d(t)
—d(e)]/d(t), wherea,,y=3.54 A is the lattice constant of
a strain-free InN filmag; is that of theepitaxial InN, d(t)
denotes the spacing betwe€f,1) and (0,) diffraction
beams at timé measured experimentally whiti«) denotes
that after a long-time deposition when the strain is com-
FIG. 2. STM image of InN surface following deposition(a} 450 °C with pletely r_ellevec_Xl._e., the reciprocal Pf InN Iattl.ce paramefer
I/N ~1.5 and(b) 350 °C with In/N ~0.6, showing, respectively, the 20 From Fig. 3, it is clear that strain relaxation commences
and 3D InN islands. upon the initiation(within the first BL) of film deposition
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