160 research outputs found

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Coordinated Regulation of ATF2 by miR-26b in Ξ³-Irradiated Lung Cancer Cells

    Get PDF
    MicroRNA regulates cellular responses to ionizing radiation (IR) through translational control of target genes. We analyzed time-series changes in microRNA expression following Ξ³-irradiation in H1299 lung cancer cells using microarray analysis. Significantly changed IR-responsive microRNAs were selected based on analysis of variance analysis, and predicted target mRNAs were enriched in mitogen-activated protein kinase (MAPK) signaling. Concurrent analysis of time-series mRNA and microRNA profiles uncovered that expression of miR-26b was down regulated, and its target activating transcription factor 2 (ATF2) mRNA was up regulated in Ξ³-irradiated H1299 cells. IR in miR-26b overexpressed H1299 cells could not induce expression of ATF2. When c-Jun N-terminal kinase activity was inhibited using SP600125, expression of miR-26b was induced following Ξ³-irradiation in H1299 cells. From these results, we concluded that IR-induced up-regulation of ATF2 was coordinately enhanced by suppression of miR-26b in lung cancer cells, which may enhance the effect of IR in the MAPK signaling pathway

    Expression of Dickkopf-1 and Beta-Catenin Related to the Prognosis of Breast Cancer Patients with Triple Negative Phenotype

    Get PDF
    BACKGROUND AND AIM: We investigated the prognostic importance of dickkopf-1(DKK1) and beta-catenin expression in triple negative breast cancers. METHODS: The expression of DKK1 and beta-catenin was evaluated in breast cell lines using RT-PCR and western blot. Immunohistochemistry was used to characterize the expression pattern of DKK1 and beta-catenin in 85 triple negative breast cancers and prognostic significance was assessed by Kaplan-Meier analysis and Cox proportional hazards regression modeling. RESULTS: The expression of DKK1 was confirmed in hormone-resistant breast cell lines MDA-MB-231, MDA-MB-231-HM and MDA-MB-435. Expression of DKK1 in triple negative breast cancers correlated with cytoplasmic/nuclear beta-catenin (pβ€Š=β€Š0.000). Elevated expression of DKK1 and cytoplasmic/nuclear beta-catenin in triple negative cancers indicate poor outcome of patients. DKK1 was also a prognostic factor for patients with earlier stage or no lymph node metastasis. CONCLUSION: DKK1 together with beta-catenin might be important prognostic factors in triple negative breast carcinoma. DKK1 might be a valuable biomarker in predicting the prognosis of patients with earlier stage or no lymph node metastasis. It is possible that through further understanding of the role of Wnt/beta-catenin pathway activation, beta-catenin would be a potential therapeutic target for the triple negative breast cancer

    Dual FGF-2 and Intergrin Ξ±5Ξ²1 Signaling Mediate GRAF-Induced RhoA Inactivation in a Model of Breast Cancer Dormancy

    Get PDF
    Interactions with the bone marrow stroma regulate dormancy and survival of breast cancer micrometastases. In an in vitro model of dormancy in the bone marrow, we previously demonstrated that estrogen-dependent breast cancer cells are partially re-differentiated by FGF-2, re-express integrin Ξ±5Ξ²1 lost with malignant transformation and acquire an activated PI3K/Akt pathway. Ligation of integrin Ξ±5Ξ²1 by fibronectin and activation of the PI3K pathway both contribute to survival of these dormant cells. Here, we investigated mechanisms responsible for the dormant phenotype. Experiments demonstrate that integrin Ξ±5Ξ²1 controls de novo cytoskeletal rearrangements, cell spreading, focal adhesion kinase rearrangement to the cell perimeter and recruitment of a RhoA GAP known as GRAF. This results in the inactivation of RhoA, an effect which is necessary for the stabilization of cortical actin. Experiments also demonstrate that activation of the PI3K pathway by FGF-2 is independent of integrin Ξ±5Ξ²1 and is also required for cortical actin reorganization, GRAF membrane relocalization and RhoA inactivation. These data suggest that GRAF-mediated RhoA inactivation and consequent phenotypic changes of dormancy depend on dual signaling by FGF-2-initiated PI3K activation and through ligation of integrin Ξ±5Ξ²1 by fibronectin

    Antibody-Mediated Growth Inhibition of Plasmodium falciparum: Relationship to Age and Protection from Parasitemia in Kenyan Children and Adults

    Get PDF
    BACKGROUND: Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria. METHODS: A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories. RESULTS: Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children \u3c4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012-2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition. CONCLUSION: Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age

    Polygenic susceptibility to prostate and breast cancer: implications for personalised screening

    Get PDF
    BACKGROUND: We modelled the efficiency of a personalised approach to screening for prostate and breast cancer based on age and polygenic risk-profile compared with the standard approach based on age alone.METHODS: We compared the number of cases potentially detectable by screening in a population undergoing personalised screening with a population undergoing screening based on age alone. Polygenic disease risk was assumed to have a log-normal relative risk distribution predicted for the currently known prostate or breast cancer susceptibility variants (N = 31 and N = 18, respectively).RESULTS: Compared with screening men based on age alone (aged 55-79: 10-year absolute risk >= 2%), personalised screening of men age 45-79 at the same risk threshold would result in 16% fewer men being eligible for screening at a cost of 3% fewer screen-detectable cases, but with added benefit of detecting additional cases in younger men at high risk. Similarly, compared with screening women based on age alone (aged 47-79: 10-year absolute risk >= 2.5%), personalised screening of women age 35-79 at the same risk threshold would result in 24% fewer women being eligible for screening at a cost of 14% fewer screen-detectable cases.CONCLUSION: Personalised screening approach could improve the efficiency of screening programmes. This has potential implications on informing public health policy on cancer screening. British Journal of Cancer (2011) 104, 1656 -1663. doi: 10.1038/bjc.2011.118 www.bjcancer.com Published online 5 April 2011 (C) 2011 Cancer Research U

    Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells

    Get PDF
    Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-Ξ±, interleukin-1Ξ², and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation

    Ki-67 can be used for further classification of triple negative breast cancer into two subtypes with different response and prognosis

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Introduction: Triple negative breast cancer (TNBC) has a poorer survival, despite a higher response rate to neoadjuvant chemotherapy. The purpose of this study was to identify the predictive or prognostic value of Ki-67 among patients with TNBC treated with neoadjuvant chemotherapy, and the role of Ki-67 in further classification of TNBC. Methods: A total of 105 TNBC patients who received neoadjuvant docetaxel/doxorubicin chemotherapy were included in the present study. Pathologic complete response (pCR) rate, relapse-free survival (RFS), and overall survival (OS) were compared according to the level of Ki-67. Results: pCR was observed in 13.3% of patients. TNBC with high Ki-67 expression (>= 10%) showed a higher pCR rate to neoadjuvant chemotherapy than TNBC with low Ki-67 expression. None of the low Ki-67 group achieved pCR (18.2% in the high Ki-67 group vs. 0.0% in the low Ki-67 group, P = 0.019). However, a high Ki-67 expression was significantly associated with poor RFS and OS in TNBC, despite a higher pCR rate (P = 0.005, P = 0.019, respectively). In multivariate analysis, high Ki-67 was an independent prognostic factor for RFS in TNBC (hazard ratio = 7.82, P = 0.002). The high Ki-67 group showed a similar pattern of recurrence with overall TNBC, whereas the low Ki-67 group demonstrated a relatively constant hazard rate for relapse. Conclusions: TNBC with high Ki-67 was associated with a more aggressive clinical feature despite a higher pCR rate. High proliferation index Ki-67 can be used for further classification of TNBC into two subtypes with different responses and prognosis.

    Ndel1 Promotes Axon Regeneration via Intermediate Filaments

    Get PDF
    Failure of axons to regenerate following acute or chronic neuronal injury is attributed to both the inhibitory glial environment and deficient intrinsic ability to re-grow. However, the underlying mechanisms of the latter remain unclear. In this study, we have investigated the role of the mammalian homologue of aspergillus nidulans NudE, Ndel1, emergently viewed as an integrator of the cytoskeleton, in axon regeneration. Ndel1 was synthesized de novo and upregulated in crushed and transected sciatic nerve axons, and, upon injury, was strongly associated with neuronal form of the intermediate filament (IF) Vimentin while dissociating from the mature neuronal IF (Neurofilament) light chain NF-L. Consistent with a role for Ndel1 in the conditioning lesion-induced neurite outgrowth of Dorsal Root Ganglion (DRG) neurons, the long lasting in vivo formation of the neuronal Ndel1/Vimentin complex was associated with robust axon regeneration. Furthermore, local silencing of Ndel1 in transected axons by siRNA severely reduced the extent of regeneration in vivo. Thus, Ndel1 promotes axonal regeneration; activating this endogenous repair mechanism may enhance neuroregeneration during acute and chronic axonal degeneration
    • …
    corecore