148 research outputs found

    Laser vision : lidar as a transformative tool to advance critical zone science

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hydrology and Earth System Sciences 19 (2015): 2881-2897, doi:10.5194/hess-19-2881-2015.Observation and quantification of the Earth's surface is undergoing a revolutionary change due to the increased spatial resolution and extent afforded by light detection and ranging (lidar) technology. As a consequence, lidar-derived information has led to fundamental discoveries within the individual disciplines of geomorphology, hydrology, and ecology. These disciplines form the cornerstones of critical zone (CZ) science, where researchers study how interactions among the geosphere, hydrosphere, and biosphere shape and maintain the "zone of life", which extends from the top of unweathered bedrock to the top of the vegetation canopy. Fundamental to CZ science is the development of transdisciplinary theories and tools that transcend disciplines and inform other's work, capture new levels of complexity, and create new intellectual outcomes and spaces. Researchers are just beginning to use lidar data sets to answer synergistic, transdisciplinary questions in CZ science, such as how CZ processes co-evolve over long timescales and interact over shorter timescales to create thresholds, shifts in states and fluxes of water, energy, and carbon. The objective of this review is to elucidate the transformative potential of lidar for CZ science to simultaneously allow for quantification of topographic, vegetative, and hydrological processes. A review of 147 peer-reviewed lidar studies highlights a lack of lidar applications for CZ studies as 38 % of the studies were focused in geomorphology, 18 % in hydrology, 32 % in ecology, and the remaining 12 % had an interdisciplinary focus. A handful of exemplar transdisciplinary studies demonstrate lidar data sets that are well-integrated with other observations can lead to fundamental advances in CZ science, such as identification of feedbacks between hydrological and ecological processes over hillslope scales and the synergistic co-evolution of landscape-scale CZ structure due to interactions amongst carbon, energy, and water cycles. We propose that using lidar to its full potential will require numerous advances, including new and more powerful open-source processing tools, exploiting new lidar acquisition technologies, and improved integration with physically based models and complementary in situ and remote-sensing observations. We provide a 5-year vision that advocates for the expanded use of lidar data sets and highlights subsequent potential to advance the state of CZ science.The workshop forming the impetus for this paper was funded by the National Science Foundation (EAR 1406031). Additional funding for the workshop and planning was provided to S. W. Lyon by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT grant no. 2013-5261). A. A. Harpold was supported by an NSF fellowship (EAR 1144894)

    Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States

    Get PDF
    We related measurements of annual burned area in the southwest United States during 1984–2013 to records of climate variability. Within forests, annual burned area correlated at least as strongly with spring–summer vapour pressure deficit (VPD) as with 14 other drought-related metrics, including more complex metrics that explicitly represent fuel moisture. Particularly strong correlations with VPD arise partly because this term dictates the atmospheric moisture demand. Additionally, VPD responds to moisture supply, which is difficult to measure and model regionally due to complex micrometeorology, land cover and terrain. Thus, VPD appears to be a simple and holistic indicator of regional water balance. Coupled with the well-known positive influence of prior-year cold season precipitation on fuel availability and connectivity, VPD may be utilised for burned area forecasts and also to infer future trends, though these are subject to other complicating factors such as land cover change and management. Assuming an aggressive greenhouse gas emissions scenario, climate models predict mean spring–summer VPD will exceed the highest recorded values in the southwest in nearly 40% of years by the middle of this century. These results forewarn of continued increases in burned forest area in the southwest United States, and likely elsewhere, when fuels are not limiting

    Causes and Implications of Extreme Atmospheric Moisture Demand during the Record-Breaking 2011 Wildfire Season in the Southwestern United States

    Get PDF
    In 2011, exceptionally low atmospheric moisture content combined with moderately high temperatures to produce a record-high vapor pressure deficit (VPD) in the southwestern United States (SW). These conditions combined with record-low cold-season precipitation to cause widespread drought and extreme wildfires. Although interannual VPD variability is generally dominated by temperature, high VPD in 2011 was also driven by a lack of atmospheric moisture. The May–July 2011 dewpoint in the SW was 4.5 standard deviations below the long-term mean. Lack of atmospheric moisture was promoted by already very dry soils and amplified by a strong ocean-to-continent sea level pressure gradient and upper-level convergence that drove dry northerly winds and subsidence upwind of and over the SW. Subsidence drove divergence of rapid and dry surface winds over the SW, suppressing southerly moisture imports and removing moisture from already dry soils. Model projections developed for the fifth phase of the Coupled Model Intercomparison Project (CMIP5) suggest that by the 2050s warming trends will cause mean warm-season VPD to be comparable to the record-high VPD observed in 2011. CMIP5 projections also suggest increased interannual variability of VPD, independent of trends in background mean levels, as a result of increased variability of dewpoint, temperature, vapor pressure, and saturation vapor pressure. Increased variability in VPD translates to increased probability of 2011-type VPD anomalies, which would be superimposed on ever-greater background VPD levels. Although temperature will continue to be the primary driver of interannual VPD variability, 2011 served as an important reminder that atmospheric moisture content can also drive impactful VPD anomalies

    Exploring the Ecological History of a Tropical Agroforestry Landscape Using Fossil Pollen and Charcoal Analysis from Four Sites in Western Ghats, India

    Get PDF
    Contrary to expectations, some human-modified landscapes are considered to sustain both human activities and biodiversity over the long-term. Agroforestry systems are among these landscapes where crops are planted under native shade trees. In this context, ancient agroforestry systems can provide insight into how farmers managed the landscape over time. Such insight can help to quantify the extent to which tropical forests (especially habitat-specialist trees) are responding to local and landscape-level management. Here, we extracted fossil pollen (indicator of past vegetation changes) and macroscopic charcoal (indicator of biomass burning) from four forest hollows’ sedimentary sequences in an ancient agroforestry system in Western Ghats, India. We used a mixed-modelling approach and a principal components analysis (PCA) to determine past trajectories of forest change and species composition dynamics for the last 900 years. In addition, we reconstructed the long-term forest canopy dynamics and examined the persistence of habitat-specialist trees over time. Our results show that the four sites diverged to a surprising degree in both taxa composition and dynamics. However, despite these differences, forest has persisted over 900 years under agricultural activities within agroforestry systems. This long-term analysis highlights the importance of different land-use legacies as a framework to increase the effectiveness of management across tropical agricultural lands

    The North American tree-ring fire-scar network

    Get PDF
    Fire regimes in North American forests are diverse and modern fire records are often too short to capture important patterns, trends, feedbacks, and drivers of variability. Tree-ring fire scars provide valuable perspectives on fire regimes, including centuries-long records of fire year, season, frequency, severity, and size. Here, we introduce the newly compiled North American tree-ring fire-scar network (NAFSN), which contains 2562 sites, >37,000 fire-scarred trees, and covers large parts of North America. We investigate the NAFSN in terms of geography, sample depth, vegetation, topography, climate, and human land use. Fire scars are found in most ecoregions, from boreal forests in northern Alaska and Canada to subtropical forests in southern Florida and Mexico. The network includes 91 tree species, but is dominated by gymnosperms in the genus Pinus. Fire scars are found from sea level to >4000-m elevation and across a range of topographic settings that vary by ecoregion. Multiple regions are densely sampled (e.g., >1000 fire-scarred trees), enabling new spatial analyses such as reconstructions of area burned. To demonstrate the potential of the network, we compared the climate space of the NAFSN to those of modern fires and forests; the NAFSN spans a climate space largely representative of the forested areas in North America, with notable gaps in warmer tropical climates. Modern fires are burning in similar climate spaces as historical fires, but disproportionately in warmer regions compared to the historical record, possibly related to under-sampling of warm subtropical forests or supporting observations of changing fire regimes. The historical influence of Indigenous and non-Indigenous human land use on fire regimes varies in space and time. A 20th century fire deficit associated with human activities is evident in many regions, yet fire regimes characterized by frequent surface fires are still active in some areas (e.g., Mexico and the southeastern United States). These analyses provide a foundation and framework for future studies using the hundreds of thousands of annually- to sub-annually-resolved tree-ring records of fire spanning centuries, which will further advance our understanding of the interactions among fire, climate, topography, vegetation, and humans across North America
    • 

    corecore