3,137 research outputs found

    Relevance of ERTS-1 to the State of Ohio

    Get PDF
    The author has identified the following significant results. During the first year of project effort the ability of ERTS-1 imagery to be used for mapping and inventorying strip-mined areas in southeastern Ohio, the potential of using ERTS-1 imagery in water quality and coastal zone management in the Lake Erie region, and the extent that ERTS-1 imagery could contribute to localized (metropolitan/urban), multicounty, and overall state land use needs were experimentally demonstrated and reported as significant project results

    Resource management implications of ERTS-1 data to Ohio

    Get PDF
    Initial experimental analysis of ERTS-1 imagery has demonstrated that remote sensing from space is a means of delineating and inventorying Ohio's strip-mined areas, detecting power plant smoke plumes, and proving the data necessary for periodically compiling land use maps for the entire state. The nature and extent of these problems throughout Ohio, how ERTS data can contribute to their solution, and estimates of the long term significance of these initial findings to overall resource management interests in Ohio are summarized

    2MASS J06164006-6407194: The First Outer Halo L Subdwarf

    Full text link
    We present the serendipitous discovery of an L subdwarf, 2MASS J06164006-6407194, in a search of the Two Micron All Sky Survey for T dwarfs. Its spectrum exhibits features indicative of both a cool and metal poor atmosphere including a heavily pressured-broadened K I resonant doublet, Cs I and Rb I lines, molecular bands of CaH, TiO, CrH, FeH, and H2O, and enhanced collision induced absorption of H2. We assign 2MASS 0616-6407 a spectral type of sdL5 based on a comparison of its red optical spectrum to that of near solar-metallicity L dwarfs. Its high proper motion (mu =1.405+-0.008 arcsec yr-1), large radial velocity (Vrad = 454+-15 km s-1), estimated uvw velocities (94, -573, 125) km s-1 and Galactic orbit with an apogalacticon at ~29 kpc are indicative of membership in the outer halo making 2MASS 0616-6407 the first ultracool member of this population.Comment: Accepted for publication in Ap

    Phase formation and thermal stability of ultrathin nickel-silicides on Si(100)

    Get PDF
    The solid-state reaction and agglomeration of thin nickel-silicide films was investigated from sputter deposited nickel films (1-10 nm) on silicon-on-insulator (100) substrates. For typical anneals at a ramp rate of 3 degrees C/s, 5-10 nm Ni films react with silicon and form NiSi, which agglomerates at 550-650 degrees C, whereas films with a thickness of 3.7 nm of less were found to form an epitaxylike nickel-silicide layer. The resulting films show an increased thermal stability with a low electrical resistivity up to 800 degrees C

    Effective dynamics using conditional expectations

    Full text link
    The question of coarse-graining is ubiquitous in molecular dynamics. In this article, we are interested in deriving effective properties for the dynamics of a coarse-grained variable ξ(x)\xi(x), where xx describes the configuration of the system in a high-dimensional space Rn\R^n, and ξ\xi is a smooth function with value in R\R (typically a reaction coordinate). It is well known that, given a Boltzmann-Gibbs distribution on x∈Rnx \in \R^n, the equilibrium properties on ξ(x)\xi(x) are completely determined by the free energy. On the other hand, the question of the effective dynamics on ξ(x)\xi(x) is much more difficult to address. Starting from an overdamped Langevin equation on x∈Rnx \in \R^n, we propose an effective dynamics for ξ(x)∈R\xi(x) \in \R using conditional expectations. Using entropy methods, we give sufficient conditions for the time marginals of the effective dynamics to be close to the original ones. We check numerically on some toy examples that these sufficient conditions yield an effective dynamics which accurately reproduces the residence times in the potential energy wells. We also discuss the accuracy of the effective dynamics in a pathwise sense, and the relevance of the free energy to build a coarse-grained dynamics

    X-point collapse and saturation in the nonlinear tearing mode reconnection

    Full text link
    We study the nonlinear evolution of the resistive tearing mode in slab geometry in two dimensions. We show that, in the strongly driven regime (large Delta'), a collapse of the X-point occurs once the island width exceeds a certain critical value ~1/Delta'. A current sheet is formed and the reconnection is exponential in time with a growth rate ~eta^1/2, where eta is the resistivity. If the aspect ratio of the current sheet is sufficiently large, the sheet can itself become tearing-mode unstable, giving rise to secondary islands, which then coalesce with the original island. The saturated state depends on the value of Delta'. For small Delta', the saturation amplitude is ~Delta' and quantitatively agrees with the theoretical prediction. If Delta' is large enough for the X-point collapse to have occured, the saturation amplitude increases noticeably and becomes independent of Delta'.Comment: revtex4, 4 pages, 18 figure

    A Model for Patchy Reconnection in Three Dimensions

    Full text link
    We show, theoretically and via MHD simulations, how a short burst of reconnection localized in three dimensions on a one-dimensional current sheet creates a pair of reconnected flux tubes. We focus on the post-reconnection evolution of these flux tubes, studying their velocities and shapes. We find that slow-mode shocks propagate along these reconnected flux tubes, releasing magnetic energy as in steady-state Petschek reconnection. The geometry of these three-dimensional shocks, however, differs dramatically from the classical two-dimensional geometry. They propagate along the flux tube legs in four isolated fronts, whereas in the two-dimensional Petschek model, they form a continuous, stationary pair of V-shaped fronts. We find that the cross sections of these reconnected flux tubes appear as teardrop shaped bundles of flux propagating away from the reconnection site. Based on this, we argue that the descending coronal voids seen by Yohkoh SXT, LASCO, and TRACE are reconnected flux tubes descending from a flare site in the high corona, for example after a coronal mass ejection. In this model, these flux tubes would then settle into equilibrium in the low corona, forming an arcade of post-flare coronal loops.Comment: 27 pages plus 16 figure

    Presence of matrix-specific antibodies in affinity-purified polyclonal antibodies

    Full text link
    In general, antigen affinity columns made with commercially prepared activated affinity supports bind antibody specific for the coupled antigen. Nonetheless, in some cases affinity purification may yield antibodies to molecules other than the molecule of interest. In this report, we demonstrate such an occurrence: an antibody which adsorbs to an Affi-Prep 10 affinity matrix was found in the serum of sheep immunized against calmodulin. The contaminating antibody bound to cell nuclei and condensed chromosomes; the composition of the Affi-Prep 10 matrix suggests that the antibody may cross-react to the sugar-phosphate backbone of DNA. We were able to remove the contaminating antibody from the anti-calmodulin by passing the affinity-purified mixture over an antigen-free Affi-Prep 10 column.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29497/1/0000583.pd
    • …
    corecore