158 research outputs found

    Risk factors associated with symptomatic cholelithiasis in Taiwan: a population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cholelithiasis has become a major health problem in Taiwan. The predominant type of gallstone found in Asian populations differs from that in the West, indicating possible differences in the etiology and risk factors for cholelithiasis. The aim of this study is to investigate the risk factors for cholelithiasis using data representative of the general population.</p> <p>Methods</p> <p>We performed a population-based, case-control study in which we analyzed medical data for 3725 patients newly diagnosed with cholelithiasis and 11175 gender- and age-matched controls with no history of cholelithiasis, using information obtained from the 2005 Registry for Beneficiaries of the National Health Insurance Research Database. Coexisting medical conditions were included in the analysis. Relative risks were estimated by adjusted odds ratio (OR) and 95% confidence interval (CI) using a multivariate logistic regression analysis.</p> <p>Results</p> <p>After controlling for the other covariates, multivariate logistic regression analysis identified the following as risk factors for cholelithiasis (in descending order of contribution): Among all patients - hepatitis C (OR = 2.78), cirrhosis (OR = 2.47), hepatitis B (OR = 2.00), obesity (OR = 1.89), and hyperlipidemia (OR = 1.54); Among women - hepatitis C (OR = 3.05), cirrhosis (OR = 1.92), obesity (OR = 1.91), menopause (OR = 1.61), hepatitis B (OR = 1.54), and hyperlipidemia (OR = 1.49). Diabetes mellitus appeared to have a marked influence on the development of cholelithiasis but was not identified as a significant independent risk factor for cholelithiasis.</p> <p>Conclusions</p> <p>The risk factors for cholelithiasis were obesity, hyperlipidemia, hepatitis B infection, hepatitis C infection, and cirrhosis in both genders, and menopause in females. Despite differences in the predominate type of gallstone in Asian versus Western populations, we identified no unique risk factors among the population of Taiwan.</p

    Solution Structures of the Acyl Carrier Protein Domain from the Highly Reducing Type I Iterative Polyketide Synthase CalE8

    Get PDF
    Biosynthesis of the enediyne natural product calicheamicins γ1I in Micromonospora echinospora ssp. calichensis is initiated by the iterative polyketide synthase (PKS) CalE8. Recent studies showed that CalE8 produces highly conjugated polyenes as potential biosynthetic intermediates and thus belongs to a family of highly-reducing (HR) type I iterative PKSs. We have determined the NMR structure of the ACP domain (meACP) of CalE8, which represents the first structure of a HR type I iterative PKS ACP domain. Featured by a distinct hydrophobic patch and a glutamate-residue rich acidic patch, meACP adopts a twisted three-helix bundle structure rather than the canonical four-helix bundle structure. The so-called ‘recognition helix’ (α2) of meACP is less negatively charged than the typical type II ACPs. Although loop-2 exhibits greater conformational mobility than other regions of the protein with a missing short helix that can be observed in most ACPs, two bulky non-polar residues (Met992, Phe996) from loop-2 packed against the hydrophobic protein core seem to restrict large movement of the loop and impede the opening of the hydrophobic pocket for sequestering the acyl chains. NMR studies of the hydroxybutyryl- and octanoyl-meACP confirm that meACP is unable to sequester the hydrophobic chains in a well-defined central cavity. Instead, meACP seems to interact with the octanoyl tail through a distinct hydrophobic patch without involving large conformational change of loop-2. NMR titration study of the interaction between meACP and the cognate thioesterase partner CalE7 further suggests that their interaction is likely through the binding of CalE7 to the meACP-tethered polyene moiety rather than direct specific protein-protein interaction

    Role of Ox-PAPCs in the Differentiation of Mesenchymal Stem Cells (MSCs) and Runx2 and PPARγ2 Expression in MSCs-Like of Osteoporotic Patients

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) can differentiate into osteoblasts and adipocytes and conditions causing bone loss may induce a switch from the osteoblast to adipocyte lineage. In addition, the expression of Runx2 and the PPARγ2 transcription factor genes is essential for cellular commitment to an osteogenic and adipogenic differentiation, respectively. Modified lipoproteins derived from the oxidation of arachidonate-containing phospholipids (ox-PAPCs: POVPC, PGPC and PEIPC) are considered important factors in atherogenesis. METHODOLOGY: We investigated the effect of ox-PAPCs on osteogenesis and adipogenesis in human mesenchymal stem cells (hMSCs). In particular, we analyzed the transcription factor Runx2 and the PPARγ2 gene expression during osteogenic and adipogenic differentiation in absence and in presence of ox-PAPCs. We also analyzed gene expression level in a panel of osteoblastic and adipogenic differentiation markers. In addition, as circulating blood cells can be used as a "sentinel" that responds to changes in the macro- or micro-environment, we analyzed the Runx2 and the PPARγ2 gene expression in MSCs-like and ox-PAPC levels in serum of osteoporotic patients (OPs). Finally, we examined the effects of sera obtained from OPs in hMSCs comparing the results with age-matched normal donors (NDs). PRINCIPAL FINDINGS: Quantitative RT-PCR demonstrated that ox-PAPCs enhanced PPARγ2 and adipogenic gene expression and reduced Runx2 and osteoblast differentiation marker gene expression in differentiating hMSCs. In OPs, ox-PAPC levels and PPARγ2 expression were higher than in NDs, whereas Runx2 was lower than in ND circulant MSCs-like. CONCLUSIONS: Ox-PAPCs affect the osteogenic differentiation by promoting adipogenic differentiation and this effect may appear involved in bone loss in OPs

    Pharmacological studies of the mechanism and function of interleukin-1β-induced miRNA-146a expression in primary human airway smooth muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the widespread induction of miR-146a during the innate immune response little is known regarding its biogenesis, function and mechanism. We have therefore examined the role of miR-146a during the interleukin (IL)-1β-stimulated IL-6 and IL-8 release and proliferation in primary human airway smooth muscle (HASM) cells.</p> <p>Methods</p> <p>HASM cells were isolated from human lung re-section, cultured to a maximum of 3 - 6 passages and then exposed to IL-1β. miR-146a expression were determined by qRT-PCR, IL-6 and IL-8 release by ELISA and proliferation using bromodeoxyuridine incorporation. The role of NF-κB and the MAP kinase pathways was assessed using pharmacological inhibitors of IKK2 (TPCA-1), JNK (SP600125), p38 MAP kinase (SB203580) and MEK-1/2 (PD98059). miR-146a function was determined following transfection of HASM with inhibitors and mimics using Amaxa electroporation.</p> <p>Results</p> <p>IL-1β induced a time-dependent and prolonged 100-fold induction in miR-146a expression, which correlated with release of IL-6 and IL-8. Exposure to IL-1β had no effect upon HASM proliferation. Pharmacological studies showed that expression of primary miR-146a was regulated at the transcriptional levels by NF-κB whilst post-transcriptional processing to mature miR-146a was regulated by MEK-1/2 and JNK-1/2. Functional studies indicated that IL-1β-induced miR-146a expression does not negatively regulate IL-6 and IL-8 release or basal proliferation. However, inhibition of IL-1β-induced IL-6 and IL-8 release was observed at the super-maximal intracellular miR-146a levels obtained by transfection with miR-146a mimics and indicates that studies using miRNA mimics can produce false positive results. Mechanistic studies showed that in the presence of super-maximal levels, the action of miR-146a mimics was mediated at a step following IL-6 and IL-8 mRNA transcription and not through down-regulation of IL-1 receptor associated kinase 1 (IRAK-1) and TNF receptor-associated factor 6 (TRAF6) protein expression, two predicted miR-146a targets involved in IL-1β signalling.</p> <p>Conclusions</p> <p>We have shown that IL-1β-induced miR-146a expression in HASM and that this was regulated at the transcriptional level by NF-κB and at the post-transcriptional level by the MEK-1/2 and JNK-1/2. Unlike previous reports, studies using miRNA inhibitors showed that miR-146a expression did not regulate IL-6 and IL-8 release or proliferation and suggest miR-146a function and mechanism is cell-type dependent.</p
    corecore