820 research outputs found
End-to-End Joint Antenna Selection Strategy and Distributed Compress and Forward Strategy for Relay Channels
Multi-hop relay channels use multiple relay stages, each with multiple relay
nodes, to facilitate communication between a source and destination.
Previously, distributed space-time codes were proposed to maximize the
achievable diversity-multiplexing tradeoff, however, they fail to achieve all
the points of the optimal diversity-multiplexing tradeoff. In the presence of a
low-rate feedback link from the destination to each relay stage and the source,
this paper proposes an end-to-end antenna selection (EEAS) strategy as an
alternative to distributed space-time codes. The EEAS strategy uses a subset of
antennas of each relay stage for transmission of the source signal to the
destination with amplify and forwarding at each relay stage. The subsets are
chosen such that they maximize the end-to-end mutual information at the
destination. The EEAS strategy achieves the corner points of the optimal
diversity-multiplexing tradeoff (corresponding to maximum diversity gain and
maximum multiplexing gain) and achieves better diversity gain at intermediate
values of multiplexing gain, versus the best known distributed space-time
coding strategies. A distributed compress and forward (CF) strategy is also
proposed to achieve all points of the optimal diversity-multiplexing tradeoff
for a two-hop relay channel with multiple relay nodes.Comment: Accepted for publication in the special issue on cooperative
communication in the Eurasip Journal on Wireless Communication and Networkin
High temperature optical absorption investigation into the electronic transitions in solβgel derived C12A7 thin films
Optical absorption into 6Β mm thick solβgel derived films, annealed at 1300Β Β°C of 12CaOΒ·7Al2O3 calcium aluminate binary compound on MgOγ100γ single crystal substrates was studied at temperatures ranging from room temperature to 300Β Β°C. Experimental data were analysed in both Tauc and Urbach regions. The optical band gap decreased from 4.088Β eV at 25Β Β°C to 4.051Β eV at 300Β Β°C, while Urbach energy increased from 0.191Β eV at 25Β Β°C to 0.257Β eV at 300Β Β°C. The relationship between the optical band gap and the Urbach energy at different temperatures showed an almost linear relationship from which the theoretical values of 4.156 and 0.065Β eV were evaluated for the band gap energy and Urbach energy of a 12CaOΒ·7Al2O3 crystal with zero structural disorder at 0Β K
Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancerβthe relationship with regulatory hypoxia-inducible factor-1Ξ± expression, tumor invasiveness, and patient prognosis
Increased glucose uptake mediated by glucose
transporters and reliance on glycolysis are common features
of malignant cells. Hypoxia-inducible factor-1Ξ± supports the
adaptation of hypoxic cells by inducing genes related to
glucose metabolism. The contribution of glucose transporter
(GLUT) and hypoxia-inducible factor-1Ξ± (HIF-1Ξ±) activity to
tumor behavior and their prognostic value in head and neck
cancers remains unclear. The aim of this study was to examine
the predictive value of GLUT1, GLUT3, and HIF-1Ξ± messenger
RNA (mRNA)/protein expression as markers of tumor
aggressiveness and prognosis in laryngeal cancer. The level of
hypoxia/metabolic marker genes was determined in 106 squamous
cell laryngeal cancer (SCC) and 73 noncancerous
matched mucosa (NCM) controls using quantitative realtime
PCR. The related protein levels were analyzed by
Western blot. Positive expression of SLC2A1, SLC2A3, and
HIF-1Ξ± genes was noted in 83.9, 82.1, and 71.7 % of SCC
specimens and in 34.4, 59.4, and 62.5 % of laryngeal cancer
samples. Higher levels of mRNA/protein for GLUT1 and
HIF-1Ξ± were noted in SCC compared to NCM (p<0.05).
SLC2A1 was found to have a positive relationship with grade,
tumor front grading (TFG) score, and depth and mode of
invasion (p<0.05). SLC2A3 was related to grade and invasion
type (p<0.05). There were also relationships of HIF-1Ξ± with
pTNM, TFG scale, invasion depth and mode, tumor recurrences,
and overall survival (p<0.05). In addition, more advanced
tumors were found to be more likely to demonstrate
positive expression of these proteins. In conclusion, the
hypoxia/metabolic markers studied could be used as molecular
markers of tumor invasiveness in laryngeal cancer.This work was supported, in part, by the statutory
fund of the Department of Cytobiochemistry, University of ΕΓ³dΕΊ, Poland
(506/811), and by grant fromtheNational Science Council, Poland (N403
043 32/2326)
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.
BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 Γ coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
Primary myxofibrosarcoma of the parotid: case report
<p>Abstract</p> <p>Background</p> <p>Myxofibrosarcoma is common in the extremities of elderly people and is characterized by a high frequency of local recurrence.</p> <p>Case presentation</p> <p>We report a 37 year old female who presented with a 4-month history of facial pain and a 3-month history of painful progressive swelling in the preauricular area. She underwent a total parotidectomy. The tumor was histopathologically and immunohistochemically diagnosed as a low-grade myxofibrosarcoma. The patient was free of disease 9 months after surgery with uneventful post-operative clinical course.</p> <p>Conclusions</p> <p>Parotid area swelling should always alert doctors. To our knowledge, this is the first case of parotid myxofibrosarcoma. It should be added to the differential diagnosis of diseases of the parotid. We have to recognize this disease and seek adequate treatment for it.</p
Normal Mouse Intestinal Epithelial Cells as a Model for the in vitro Invasion of Trichinella spiralis Infective Larvae
It has been known for many years that Trichinella spiralis initiates infection by penetrating the columnar epithelium of the small intestine; however, the mechanisms used by the parasite in the establishment of its intramulticellular niche in the intestine are unknown. Although the previous observations indicated that invasion also occurs in vitro when the infective larvae are inoculated onto cultures of intestinal epithelial cells (e.g., human colonic carcinoma cell line Caco-2, HCT-8), a normal readily manipulated in vitro model has not been established because of difficulties in the culture of primary intestinal epithelial cells (IECs). In this study, we described a normal intestinal epithelial model in which T. spiralis infective larvae were shown to invade the monolayers of normal mouse IECs in vitro. The IECs derived from intestinal crypts of fetal mouse small intestine had the ability to proliferate continuously and express specific cytokeratins as well as intestinal functional cell markers. Furthermore, they were susceptible to invasion by T. spiralis. When inoculated onto the IEC monolayer, infective larvae penetrated cells and migrated through them, leaving trails of damaged cells heavily loaded with T. spiralis larval excretory-secretory (ES) antigens which were recognized by rabbit immune sera on immunofluorescence test. The normal intestinal epithelial model of invasion mimicking the natural environment in vivo will help us to further investigate the process as well as the mechanisms by which T. spiralis establishes its intestinal niche
Pre-Absorbed Immunoproteomics: A Novel Method for the Detection of Streptococcus suis Surface Proteins
Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that can cause infections in pigs and humans. Bacterial surface proteins are often investigated as potential vaccine candidates and biomarkers of virulence. In this study, a novel method for identifying bacterial surface proteins is presented, which combines immunoproteomic and immunoserologic techniques. Critical to the success of this new method is an improved procedure for generating two-dimensional electrophoresis gel profiles of S. suis proteins. The S. suis surface proteins identified in this study include muramidase-released protein precursor (MRP) and an ABC transporter protein, while MRP is thought to be one of the main virulence factors in SS2 located on the bacterial surface. Herein, we demonstrate that the ABC transporter protein can bind to HEp-2 cells, which strongly suggests that this protein is located on the bacterial cell surface and may be involved in pathogenesis. An immunofluorescence assay confirmed that the ABC transporter is localized to the bacterial outer surface. This new method may prove to be a useful tool for identifying surface proteins, and aid in the development of new vaccine subunits and disease diagnostics
- β¦