30 research outputs found

    Interdependence between transportation system and power distribution system: a comprehensive review on models and applications

    Get PDF
    The rapidly increasing penetration of electric vehicles in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environment protection. Integrating charging facilities, especially high-power chargers in fast charging stations, into power distribution systems remarkably alters the traditional load flow pattern, and thus imposes great challenges on the operation of distribution network in which controllable resources are rare. On the other hand, provided with appropriate incentives, the energy storage capability of electric vehicle offers a unique opportunity to facilitate the integration of distributed wind and solar power generation into power distribution system. The above trends call for thorough investigation and research on the interdependence between transportation system and power distribution system. This paper conducts a comprehensive survey on this line of research. The basic models of transportation system and power distribution system are introduced, especially the user equilibrium model, which describes the vehicular flow on each road segment and is not familiar to the readers in power system community. The modelling of interdependence across the two systems is highlighted. Taking into account such interdependence, applications ranging from long-term planning to short-term operation are reviewed with emphasis on comparing the description of traffic-power interdependence. Finally, an outlook of prospective directions and key technologies in future research is summarized.fi=vertaisarvioitu|en=peerReviewed

    Approximation Techniques for Transportation Network Design Problem under Demand Uncertainty

    No full text
    Conventional transportation network design problems treat origin-destination (OD) demand as fixed, which may not be true in reality. Some recent studies model fluctuations in OD demand by considering the first and the second moment of the system travel time, resulting in stochastic and robust network design models, respectively. Both of these models need to solve the traffic equilibrium problem for a large number of demand samples and are therefore computationally intensive. In this paper, three efficient solution-approximation approaches are identified for addressing demand uncertainty by solving for a small sample size, reducing the computational effort without much compromise on the solution quality. The application and the performance of these alternative approaches are reported. The results from this study will help in deciding suitable approximation techniques for network design under demand uncertainty. DOI: 10.1061/(ASCE)CP.1943-5487.0000091. (C) 2011 American Society of Civil Engineers

    Robust transportation network design under demand uncertainty

    No full text
    This article addresses the problem of a traffic network design problem (NDP) under demand uncertainty. The origin-destination trip matrices are taken as random variables with known probability distributions. Instead of finding optimal network design solutions for a given future scenario, we are concerned with solutions that are in some sense "good" for a variety of demand realizations. We introduce a definition of robustness accounting for the planner's required degree of robustness. We propose a formulation of the robust network design problem (RNDP) and develop a methodology based on genetic algorithm (GA) to solve the RNDP. The proposed model generates globally near-optimal network design solutions, f, based on the planner's input for robustness. The study makes two important contributions to the network design literature. First, robust network design solutions are significantly different from the deterministic NDPs and not accounting for them could potentially underestimate the network-wide impacts. Second, systematic evaluation of the performance of the model and solution algorithm is conducted on different test networks and budget levels to explore the efficacy of this approach. The results highlight the importance of accounting for robustness in transportation planning and the proposed approach is capable of producing high-quality solutions

    Pareto Optimal Multiobjective Optimization for Robust Transportation Network Design Problem

    No full text
    A study was done to formulate and solve the multiobjective network design problem with uncertain demand. Various samples of demand are realized for optimal improvements in the network while the objectives of the expected total system travel time and the higher moment for total system travel time are minimized. A formulation is proposed for multiobjective robust network design, and a solution methodology is developed on the basis, of a revised fast and elitist nondominated sorting genetic algorithm. The developed methodology has been tested on the Nguyen-Dupuis network, and various Pareto optimal solutions are compared with earlier work on the single-objective robust network design problem. A real medium-size network was solved to prove efficacy of the model. The results show better solutions for the multiobjective robust network design problem with relatively less computational effort

    Introduction

    Full text link
    No abstract availabl
    corecore