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Abstract The increasing volumes of road transportation contribute to congestion on

road, which leads to delays and other negative impacts on the reliability of trans-

portation. Moreover, transportation is one of the main contributors to the growth of

carbon dioxide equivalent emissions, where the impact of road transportation is

significant. Therefore, governmental organizations and private commercial com-

panies are looking for greener transportation solutions to eliminate the negative

externalities of road transportation. In this paper, we present a novel solution

framework to support the operational-level decisions for intermodal transportation

networks using a combination of an optimization model and simulation. The sim-

ulation model includes stochastic elements in form of uncertain travel times,

whereas the optimization model represents a deterministic and linear multi-com-

modity service network design formulation. The intermodal transportation plan can

be optimized according to different objectives, including costs, time and CO2e

emissions. The proposed approach is successfully implemented to real-life scenarios

where differences in transportation plans for alternative objectives are presented.

The solutions for transportation networks with up to 250 services and 20 orders

& Emrah Demir

demire@cardiff.ac.uk

Martin Hrušovský
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show that the approach is capable of delivering reliable solutions and identifying

possible disruptions and alternatives for adapting the unreliable transportation plans.

Keywords Intermodal transportation � CO2-equivalent � Travel time uncertainty �
Simulation � Optimization

1 Introduction

The growing volumes of freight due to globalization lead to increased volumes of

transportation on the limited transportation networks which results in delays and

disruptions due to congestion, accidents and other unexpected events. This is

especially true for road transportation which has been traditionally the preferred

transportation option and still has the major share on the modal split in Europe

(Commission European 2012; Eurostat 2014). Moreover, road transportation is one

of the main contributors to the CO2e emissions from transportation that are

responsible for climate changes (European Commission 2014). Therefore, compa-

nies are searching for alternative transportation solutions that would minimize the

negative impact of transportation.

One of the alternatives is the use of various transportation modes that offers

flexibility and efficiency. The number of transportation alternatives can be increased

by using different transportation modes and combining them in multimodal

transportation chains. Multimodal transportation not only promotes advantages of

each transportation mode but also eliminates their disadvantages. Intermodal freight

transportation is a specialization of multimodal transportation. It consecutively uses

various modes while moving the freight within a loading unit. Since a loading unit is

often a standardized container, intermodal transportation is also called as

containerized transportation. Intermodal transportation offers numerous advantages

in addition to the noted flexibility offered by multimodal transportation. For

example, standard sizes, faster transshipments, and reduced packaging expenses are

essential benefits for shippers with large volumes (Jennings and Holcomb 1996).

Along with increasing trade volumes, also the research within the intermodal

transportation has picked up in the last decades. Several review studies have already

identified the importance of operations research (OR) for intermodal transportation

(see e.g., Macharis and Bontekoning 2004; SteadieSeifi et al. 2014). One of the

identified areas of need for OR solutions is the reliability and accuracy of the

transportation networks under uncertainty. Rising awareness of the importance of

low levels of tied-up capital (and thus inventories) leads to an increasing need for

dependable on-time deliveries. Therefore, the reliability of transportation plans is

progressively considered as a key performance indicator for logistics service

providers and freight forwarders. A direct consequence of this changed operating

environment is increasing awareness for the new developments in OR literature,

such as modeling travel time uncertainties (see e.g., Noland and Small 1995;

Gendreau et al. 1996; Kok et al. 2010).

Owing to tremendous achievements in both fields of OR and computer science,

optimization models have been adapted such that uncertainties can be taken into
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account. Their main purpose is to account for variabilities beforehand in order to

develop transportation plans which are more accurate and also more reliable to

external influences. Improved collection of real-time traffic flow information over

the last decade, which enables the identification of traffic flow distributions, builds

the data basis for such approaches (Cho et al. 2006).

On an operational level, within the transportation sector especially the Vehicle

Routing Problem (VRP) and its multitude of extensions play a pivotal role in this

context (see e.g., Laporte 1992; Eksioglu et al. 2009). While VRP’s literature offers

extensive methods for mostly unscheduled road transportation, other transportation

activities in intermodal transportation networks follow a fixed schedule. Especially

train and flight connections as well as carriages on waterways, but also long-haul

transports on the road come to mind. In such cases, service network design (SND)

provides intriguing possibilities for the reproduction of transportation flows on more

than one mode.

Different modeling approaches of SND offer solutions for intermodal trans-

portation planning on the tactical as well as on the operational level. While SND on

the tactical level is especially concerned with the frequency a service should be

operated with per time frame (Frequency Service Network Design) and the

itineraries of the offered services in order to properly serve the demand, SND

problems on the operational level deal with the selection of available services for

specific transports. On each level of planning, SND offers advantages for the

consolidation of transports as well as the consideration of multiple modes (Crainic

2003). Moreover, it offers methodological possibilities which enable the represen-

tation of transshipment as well as the consolidation of containers. There is a rich

literature on both intermodal and SND problems in the past decades (see e.g.,

Crainic and Rousseau 1986; Crainic 2000; Wieberneit 2008).

In order to include uncertainties into SND formulations, SND methodologies can

be divided into static and dynamic problems. While for static problems all of the

characteristics of possible services are fixed, dynamic problems allow for

modifications of the values of at least one variable. The research for dynamic

SND problems is still in its early days, though, which leads to a lack of applications

to as well as the development of new methods for service network environments.

Most of the limited publications in this domain are dealing with demand uncertainty

(see e.g., Ukkusuri et al. 2007; Lium et al. 2009; Crainic et al. 2011) while only a

minority takes travel time uncertainties into account (see e.g., Demir et al. 2016).

Input from practitioners, though, suggests that travel time uncertainty - next to

demand uncertainty - is one of the two most important sources of variability to

consider when trying to make accurate transportation plans.

Whereas considering uncertainty in conventional methods such as linear or

dynamic programming might lead to problems due to high number of possible

scenarios, simulation can be used in this context as it can imitate the real behavior of

systems by providing test bed for various experiments (Kelton and Law 2000). It is

being widely used to analyze complex dynamic and stochastic situations in supply

chain and logistics management (see e.g., Wahle et al. 2002; Davidsson et al. 2005;

Mes et al. 2007; Reis 2014; Holmgren et al. 2014). In order to investigate the

dynamic behavior of such systems, the literature on simulation and its integration
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with standard optimization methods is recently getting more attention in OR

literature. In her PhD thesis, Preusser (2008) studied a combined simulation and

optimization approach to improve the supply chain by simultaneously optimizing a

large number of possible transportation decisions. In another study, Song et al.

(2013) proposed a simulation-based approach for sustainable transportation

optimization by searching for optimal combination of transportation planning and

operations strategies that minimize generalized costs of multimodal traveling.

An extensive literature is available for combination of optimization and

simulation in hybrid approaches in Supply Chain Management (SCM) context

(see e.g., Almeder et al. 2009; Acar et al. 2010; Nikolopoulou and Ierapetritou

2012; Sahay and Ierapetritou 2013), especially for production and distribution (see

e.g., Bilgen and Çelebi 2013; Sel and Bilgen 2014; Safaei et al. 2010), location

decisions, and perishable goods (see e.g., Keizer et al. 2015). However, the

application to transportation area is limited. To the best of our knowledge, there is

no study to date that proposes hybrid simulation and optimization approach in the

domain of intermodal freight transportation. The aim of simulation is usually to

adjust results from deterministic optimization or to estimate some parameters (e.g.,

inventory, costs). This is different from our approach, where simulation is used to

evaluate the reliability of the created deterministic plans under stochastic

conditions.

The aim of this paper is to combine the advantages of both simulation and

optimization methods by considering a dynamic and stochastic environment in the

context of intermodal transportation and to offer solutions which do not only

minimize costs but also reduce the negative impact of transportation activities. The

contributions of this paper are the following:

1. We propose a green approach for the movement of containers between a point

of origin and a specified destination combining economic (costs, time) and

environmental (carbon dioxide equivalent (CO2e) emissions) objectives. The

emissions for each service and transshipment are modeled using specific models

considering several factors such as distance, speed, payload, etc.

2. To the best of our knowledge, we propose the first hybrid simulation and

optimization approach for intermodal transportation. A mixed integer linear

program being small enough to provide optimal deterministic solution within a

reasonable computational time is proposed. These plans together with the

transportation network including different transportation modes and transship-

ment locations are then used in the stochastic simulation model. The whole

process is repeated until a feasible and reliable transportation plan for each

order is found. In this way, the size of the problem instances can be increased

and the time needed for finding the optimal solution can be reduced in

comparison to the traditional stochastic linear programming models.

3. The proposed methodology takes into account specific characteristics of each

transportation service (e.g., capacity, schedules, costs) and considers uncer-

tainties connected with travel times. The simulated travel times have a three-

point distribution for each service, representing the uncongested, congested and

disrupted travel time with their respective probabilities. Extensive
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computational experiments using real-life data have been performed to show

the benefits of using a hybrid simulation and optimization approach.

The paper is structured as follows. Section 2 introduces the intermodal transporta-

tion problem whereas Sect. 3 details the solution methodology. Section 4 discusses

the case study and other extensive computational results obtained with the proposed

approach. Conclusions and managerial insights are stated in Sect. 5.

2 Problem description

The intermodal transportation chain consists of a number of transportation services

served by different transportation modes that connect intermodal terminals where

transshipment has to be handled. There might exist multiple connections between

two terminals representing different services. These services need to be coordinated

in order to ensure smooth flow of goods in containers through the network from

their origin to the destination within time windows specified by the customer.

Typically, there exist various alternative routes within the network between the

planned origin and destination of a container and the aim is to find the optimal route

which fulfills the criteria set by the decision maker (e.g., minimization of costs, time

or emissions).

One of the characteristics of intermodal transportation networks are fixed

departure times of services which are running according to planned schedules. This

is especially true for rail or waterway services whereas truck services are usually

more flexible as they do not have fixed time slots when they can use the available

infrastructure. This constraint further increases the complexity of the intermodal

transportation problem since the fixed departure times have to be considered when

coordinating the individual services in a transportation plan. Whereas schedules can

be easily incorporated into planning if only deterministic travel times under ideal

conditions are considered, they might lead to disruptions of the network when

delays occur and the goods are delivered to the terminal only after the next planned

service has already left. Therefore, the reliability of the plans plays an important

role as it can be also seen in Fig. 1. Here the objective is to move the containers

from node A to node F which can be done using either route A–B–C–F or route A–

D–E–F. The lower part of the figure gives a Gantt chart of departure and travel times

of individual services whereby the deterministic travel times (without any

disruptions) are represented by the black, green and orange bars. In this setting,

the upper route A–B–C–F seems to be the optimal one. However, if also possible

travel time uncertainties and delays due to disruptions based on e.g., historical data

and depicted by red bars are taken into account, it is visible that the waterway

service B–C might lead to delays resulting in disruptions since the goods on the

vessel will miss the departure of the following train service C–F. Therefore, it might

be beneficial to use reliable route A–D–E–F where the delays seem to be shorter so

that the plan can be followed also in case of disruptions.

The travel time uncertainties incorporating possible common delays (e.g.,

congestion) can be represented in form of travel time distribution which can be
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modeled in different ways. One possibility is to define a discrete distribution with

three time points representing early, on-time and delayed arrival as it is done in

Noland and Polak (2002). However, since the intermodal services are operated

according to schedules and usually do not arrive earlier, we adapted this approach

and we propose a three-point distribution consisting of the uncongested travel time

representing the ideal state without any delays, the congested travel time accounting

for possible small delays (e.g., due to congestion) and disrupted travel time covering

longer delays due to e.g., an accident which is blocking the transportation link. In

order to compare this approach with a continuous time distribution, a shifted

exponential distribution is also used for travel time modeling (see e.g., Noland and

Small 1995) in the computational study in Sect. 4.

In the proposed approach, each travel time realization has a certain probability of

occurrence. This travel time distribution is different for each service which results in

a high number of possible travel time combinations within the whole intermodal

transportation network. As the possibilities of capturing all these combinations are

limited for the traditional optimization models (see Sect. 3), we propose a

combination of an optimization model and simulation model. In this combination,

the optimization model is used to compute the optimal transportation plans under

the deterministic uncongested travel times which are then evaluated for their

reliability under stochastic travel time distributions in the simulation model. In this

way it is possible to obtain the transportation plans quickly and evaluate them based

on a higher number of travel time scenarios. Before this solution approach is

presented in Sect. 3, the modeling of services and emissions from transportation in

our approach is shortly described in the following sections.

2.1 Modeling transportation services

In our study, the term service is defined as a scheduled transportation with a specific

vehicle. A service, thereby, is specified by its scheduled start as well as travel time

A

B
C

F

ED

E-F

A-B

04:0008:00 12:00 14:00 20:0016:00 18:0010:00 22:00 02:0000:00

B-C

A-D
D-E

C-F

Fig. 1 An example of the intermodal transportation problem
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(or service time) and route. While the start times are constant, travel times can take

on values of varying degrees dependent on the traffic state and infrastructure

utilization. As there can be multiple scheduled transports between terminals, the

network has to be able to represent multiple services between terminals. The focus

of this research is not on the tactical scheduling of services, but on their operational

sequencing to routing plans which fulfill the demand and provide reliable solutions

in respect to the uncertainties considered.

Supplemental to the scheduled start time as well as the service time itself, each

service is characterized by its free capacity in terms of loading units (or containers)

as well as its approximated costs and consumption of CO2e emissions when using

one of these open container slots. The services, thereby, have varying specifications

which can be modeled as a problem with heterogeneous fleet.

The demand orders to be fulfilled are specified by the amount of containers

demanded, origin and destination node as well as the earliest departure and latest

arrival time of the delivery. In order to increase the efficiency, the scope of the

network is reduced beforehand. In doing so, the network is carefully downsized by

service options definitely inappropriate for the fulfillment of the demand orders.

2.2 Modeling carbon dioxide equivalent emissions

As carbon dioxide is the dominant man-made greenhouse gas (GHG), the impacts of

other gases can also be calculated based on carbon dioxide equivalent (CO2e)

emissions (Demir et al. 2015). CO2e emissions cause atmospheric changes and

climate disruptions which are harmful to the natural and built environments, and

pose health risks (Dekker et al. 2012; Demir et al. 2014; Bektas et al. 2016).

Despite the fact that transportation sector is one of the biggest contributors of

CO2e emissions, a survey performed by Demir et al. (2013) showed that calculation

of emissions is only slowly becoming part of the transportation plans. Even when

emissions are taken into account in planning software, they are only reported as an

additional factor and they are not used as an optimization objective. Usually only

costs are taken into account for optimization and in case of multiple objectives costs

are combined with service, distance, time, etc. This development might be caused

by several reasons which make the calculation of emissions challenging. The

possible reasons are discussed below.

• The amount of emissions is dependent on the energy needed for moving a

vehicle coming either from diesel fuel or electricity consumption. Although the

energy consumption can be easily measured after the transport has been

conducted, calculation of energy consumption before the start of the transport is

problematic as it is dependent on a number of factors which are not always

known. These factors include the characteristics of the vehicle (e.g., weight, air

and rolling resistance), route and driving characteristics (e.g., gradient, speed,

number of stops), and the amount of goods transported (Eichlseder et al. 2009).

In order to estimate the emissions, a number of different models requiring

detailed inputs have been developed as shown by Demir et al. (2011) and Demir

et al. (2014). Besides these detailed microscopic models, emission calculators

492 M. Hrušovský et al.
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(macroscopic models) based on real-world measurements and recommended

values for a typical vehicle are also available (see e.g., Boulter and McCrae

2009; IFEU 2011). However, each of these models and calculators is based on

oversimplified assumptions which lead to discrepancies between estimated and

actual emissions.

• According to the GHG protocol, emissions can be divided into three scopes.

These include emissions from resources owned by a company [e.g., production

(Scope 1)], indirect emissions from purchased energy (Scope 2), and all other

emissions including also other stages of supply chain [e.g., suppliers,

transportation, distribution (Scope 3)] (Toffel and Sice 2011; Hoen et al.

2014). The emissions caused by transportation activities can either be calculated

as emissions from fuel consumption directly in the vehicle (tank-to-wheel,

TTW) or can also include emissions from production of the fuel (well-to-wheel,

WTW). Inclusion of emissions from fuel production is especially important in

cases where electric vehicles are involved since emissions from electricity

consumption are equal to zero (Kranke et al. 2011).

• The monetary value of CO2e emissions is still unclear. Since the long-term

effects of emissions on climate change and the amount of released emissions

cannot be easily predicted, the estimation of emission costs is based on a number

of assumptions including different discount rates for future events and risk

attitude of the decision makers. The social costs of emissions are estimated to be

between 0 EUR to 700 EUR per ton of emissions depending on the model

(Anthoff et al. 2011; Nordhaus 2011). Therefore the monetary value of

emissions cannot be easily compared to transportation costs.

In case of road transportation, the Passenger car and Heavy duty vehicle Emission

Model (PHEM) developed by TU Graz is an important basis for the Handbook on

Emission Factors for Road Traffic (HBEFA) that offers fuel consumption factors for

vehicles with different engine types driving on different road categories. These

factors are based on real-world measurements simulating predefined driving cycles

and provide the fuel consumption for an empty as well as fully loaded vehicle

(Eichlseder et al. 2009). There is a linear relationship between the load factor and

the fuel consumption of the vehicle and therefore the fuel consumption can be

calculated easily for different payloads. In addition to the road category and load

factor, the gradient also plays an important role. According to Knörr et al. (2011),

the influence of gradient on fuel consumption in road transport is 5–10% which

means that the emissions calculated for flat countries have to be multiplied by 1.05

for hilly and by 1.1 for mountainous countries.

In case of rail transportation, emissions are also dependent on a number of

factors, such as rolling and aerodynamic resistance, and speed as well as gradient

(Boulter and McCrae 2009). However, as the comparison with real-world values

shows, energy consumption of a train can be related to its gross weight in tons

(Knörr et al. 2011). The fuel consumption function can be also calculated for hilly

countries and therefore has to be multiplied by 0.9 for flat countries and by 1.1 for

mountainous countries (Knörr et al. 2011). In order to calculate the amount of

emissions from the energy consumption, the result has to be multiplied by the
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specific emission factor. Here it has to be differentiated between the diesel train

causing emissions by burning diesel and the electric train where the emissions are

caused only by energy production and not by energy consumption (Kranke et al.

2011).

Since the energy consumption does not produce any emissions in case of electric

trains, the well-to-wheel (WTW) emission scope has to be chosen in order to make

emissions from different transportation modes comparable. This scope includes

emissions from energy consumption and energy production (Kranke et al. 2011).

The emission factor used for diesel is therefore 3.24 kg CO2e emissions per liter of

diesel and for electric energy specific emission factors are taken for each country as

proposed by Knörr et al. (2011) and DSLV (2013).

In case of inland waterway transportation (IWT), the available emission

calculators usually use a fixed average emission factor per ton kilometre (tkm)

(see e.g., Knörr et al. 2011; IFEU 2011) or use the same methodology for IWT and

sea transportation (NTM 2008). These methods are employed due to the fact that a

detailed calculation of emissions from IWT requires a high amount of input data

which is not always available. However, the results are inaccurate and do not show

the real performance of IWT. Therefore, in our research, the model ARTEMIS

developed by Boulter and McCrae (2009) is applied. The input data for this model

consists of vessel characteristics (e.g., type, length, breadth, draught, engine power),

route properties (e.g., waterway depth and width, distance, vessel speed and

direction) and cargo characteristics (e.g., type and weight). All of these input

parameters are either proposed by the model itself or can be manually set for a

specific vessel which allows a more accurate calculation of emissions.

For the terminals an energy consumption factor of 4.4 kWh/transshipment

multiplied by the respective emission factor of the country is taken (Knörr et al.

2011). In order to express the emissions in terms of costs, a value of 70 EUR per ton

of CO2e emissions was chosen as recommended by the German Federal

Environment Agency (PLANCO 2007).

We note that the amount of emissions released per twenty-foot container (TEU)

strongly depends on the capacity utilization of the vehicle. Whereas the relationship

between the load factor and the amount of emissions is linear in case of trucks, the

emission functions for trains and inland vessels have an exponential character.

Hence, in order to reduce the complexity, the emissions per TEU were calculated

assuming the utilization of 80% for trains (PLANCO 2007) and 90% for inland

vessels (via donau 2007).

3 The development of the hybrid approach

This section presents the methodological framework for the solution of green

intermodal transportation problem which was originally defined by Demir et al.

(2016). The objective here is to find optimal and reliable transportation plans for a

set of transportation orders that are represented by their demand, origin and

destination nodes as well as earliest release and due times. While the release time
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represents a hard time constraint to work with, the due time is represented as a soft

constraint, leading to penalty costs for late deliveries.

The plans can be optimized according to three different objectives - transporta-

tion costs, time and CO2e emissions (in form of emission costs). These objectives

can be considered either separately or in combination depending on the weight

which is assigned to each objective before the optimization process is started. In this

way the traditional economic objective of minimizing costs can be combined with

reduction of environmental impact of transportation which contributes to more

sustainable transportation plans. Moreover, the resulting transportation plans have

to be reliable accounting for possible minor or major disruptions which are

represented by stochastic travel times as described in Sect. 2.

In their original work, Demir et al. (2016) proposed a mixed-integer linear

programming formulation including sample average approximation (SAA) method

for solving the defined problem. In this approach, samples of travel time

combinations for the transportation network are created in order to represent the

travel time uncertainty. Based on these samples, the reliability of transportation

plans is then evaluated directly during the optimization process. Although this

allows to consider uncertainty within the optimization model, the presented results

show that the additional complexity of the model caused by stochasticity is a

limiting factor for the sample size and also the size of instances which can be solved

to optimality. Besides that, the time objective is represented only by penalty costs

for late deliveries which means that any route that does not violate the required

delivery time can be chosen in case of time optimization without the possibility to

evaluate the optimality of the plan.

In this paper we propose a new hybrid approach combining deterministic

optimization model described in Sect. 3.1 with a simulation model presented in

Sect. 3.2. In this approach, the optimization model is solved in the first step using

deterministic (uncongested) travel times in order to obtain optimal transportation

plans without consideration of uncertainty. In this deterministic model, the time

objective consists of two parts: firstly, the total transportation time is minimized

using the the costs for inventory in transit dependent on the totatl transportation

time. Secondly, penalty costs for late delivery of goods to the destination are also

included.

In the second step, the plans serve as an input for the simulation model which

then checks the reliability of the solution under uncertain travel times. If the

transportation plan is evaluated as reliable, it is fixed for further execution,

otherwise the optimization model is used again in order to replace an unreliable plan

by a new plan for the affected order. This process is repeated until reliable

transportation plans are found for all orders. The detailed solution procedure is

presented in Sect. 3.3.

The proposed approach has a number of advantages which contribute to an

improved and more efficient solution of the problem:

• The inclusion of in-transit inventory costs enables better evaluation of plans

which minimize the transportation time.
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• The division of the solution procedure into two steps reduces the complexity of

the optimization model since only one travel time is considered for each service

instead of a number of different scenarios. As a result, the deterministic

(optimal) solution is obtained faster and the model can solve larger instances

without memory problems of the solver.

• The use of simulation for checking the reliability of transportation plans enables

to consider a higher number of scenarios in each run which increases the

statistical significance of the results. Although this has negative effect on the

computational time for small instances, the time needed for each simulation run

tends to be stable with the increasing size of the instances. This is in contrast

with the exponential time increase in case of the SAA approach.

• Since the simulation model can easily handle problems with higher complexity,

further sources of uncertainty can be added (e.g., demand, vehicle capacity,

etc.). Besides that, different probability distributions can be used for represent-

ing each source of uncertainty (Borshchev 2013).

• Whereas the original approach using SAA only reports the optimal route without

giving more information about alternative routes and causes of disruptions, the

simulation model in the proposed approach is capable of showing where and

how often the disruptions on the proposed route can usually occur. Moreover, it

is possible to define additional decision rules for changing the route in situations

where the original deterministic plan becomes infeasible in stochastic environ-

ment. In this way, additional decision criteria (e.g., costs of an alternative

solution) can be taken into account so that also plans that appear to be unreliable

can be considered as optimal if the additional costs in case of infeasibility are

very low and the costs of the next best alternative are very high (see

computational study in Sect. 4 as an example).

3.1 The optimization model

This section provides a linear mixed-integer mathematical formulation of the

deterministic optimization model, which is used in the first step of the solution

methodology to find an optimal plan for orders p 2 P defined by their demand dp,

origin i and destination j nodes as well as earliest release Cp
release and due time

Cp
duetime. Moreover, cpði; jÞ ¼ fðp 2 PÞji 2 N and j 2 Ng is a set of orders with

origin i and destination node j. The orders can be routed in a transportation network

consisting of services s 2 S (scheduled transports) and nodes i; j 2 N (transship-

ment locations). Each service, since it is connected to a schedule and vehicle, is

unique and connects transshipment locations i and j. Therefore, dsði; j; v;Ds
mÞ ¼

fðs 2 SÞji 2 N and j 2 N and v 2 Vg is a set of services executed by vehicle

v between origin i and destination node j within the starting time window bounded

by Ts
min and Ts

max. In addition to that, services are characterized by their scheduled

departure time Ds and service time ts as well as service slot price cs and CO2e

emissions per container es. Services on the road as well as transshipments are - due

to their lack of scheduled supply in reality - assumed to be available when needed.
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We first present sets, parameters and decision variables and then provide the

mathematical formulation of the model (Tables 1, 2). This model extends the model

introduced by Demir et al. (2016) by adding in-transit inventory costs to the original

time-related cost component of the objective.

The objective function (1) of the mathematical model minimizes a weighted sum

of the total costs. The weights enable the reflection of individual preferences

regarding direct transportation (x1), time-related (x2) and CO2e emissions-related

(x3) costs. The direct transportation costs consist of transportation costs per

container and service cs, which include the fixed transportation costs per service

allocated to one container as well as the direct transportation costs per container and

transshipment costs per container (cj). The time-related costs are represented by in-

transit inventory costs for the total time spent since the release of goods at the origin

until the arrival of the order to the destination. In addition to that, charges for

delayed deliveries (cppen) are also included in time-related costs. As the third

objective the CO2e emissions-related costs per kg (cemi) for the emissions consumed

per container serviced (es) and transshipped (ej) are also included. The transporta-

tion plans can be optimized for single objectives [e.g., (1, 0, 0) for transportation

Table 1 Sets and parameters used in the model

Sets and parameters

N Set of all transshipment locations

Nþ Set of start terminals of transportation orders

N�
Set of end terminals of transportation orders

P Set of transportation orders

S Set of transportation services

V Set of vehicles

Cp
release Earliest release time of order p

Cp
duetime Due time of order p

cj Transshipment costs per container in terminal j

cs Transportation costs of a service s

cemi Emissions-related costs per kg of CO2e emissions

cppen Penalty costs in case of late delivery of goods

c
p
inv In-transit inventory costs per hour for order p

caps Free capacities of services s

dp Demand (in containers) of order p

ej Emissions in kg per transshipment of container in terminal j

es Emissions in kg per transportation of container on service s

L Large (enough) number

tj Separate loading and unloading time at terminal j

ts Transportation time of service s

Ts
min Start of the departure time window for service s

Ts
max End of the departure time window for service s

xi Weight for the objective i
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costs, (0, 1, 0) for time minimization and (0, 0, 1) for CO2e emissions minimization]

or for a combination of objectives with different weights [e.g., (1, 1, 1), (1, 0, 1),

(0.2,0.7,0.1) etc.] depending on the preferences of the decision maker.

Minimize x1

X

p2P

X

s2S
xspcs þ x1

X

j2N
njcj þ x2

X

p2P
cpt ðADp � Cp

releaseÞ

þ x2

X

p2P

X

s2S
a
p
delayc

p
penþ

x3cemi
X

p2P

X

s2S
xspes þ x3

X

j2N
njej

ð1Þ

Subject to:

X

s2dðs2Sjn¼iÞ
xsp ¼ dp 8n 2 N jn ¼ i; p 2 P ð2Þ

X

s2dðs2Sjn¼jÞ
xsp ¼ dp 8n 2 N jn ¼ j; p 2 P ð3Þ

X

s2dðs2Sjn¼iÞ
xsp �

X

s2dðs2Sjn¼jÞ
xsp ¼ 0 8n 2 N jðn 6¼ i n 6¼ jÞ; p 2 P ð4Þ

X

p2cðp2PÞ
xsp � yscaps � 0 8s 2 dðs 2 SÞ ð5Þ

xsp � yspL 8s 2 dðs 2 SÞ; p 2 cðp 2 PÞ ð6Þ

xsp � ysp 8s 2 dðs 2 SÞ; p 2 cðp 2 PÞ ð7Þ

Table 2 Decision variables used in the model

Decision variables

a
p
delay Delay of order p at destination node j

As Arrival time of service s at the associated destination node j

ADp Arrival time of order p to its destination

Ds Departure time of service s at the associated departure node i

delayqrp Delay between preceding service q and succeeding service r of order p

lqr A binary variable equal to 0 if transshipment is necessary between preceding services q and

succeeding service r, 1 otherwise

nj The number of containers transshipped at terminal j

ys; ysp A binary variable equal to 1 if service s is used (for order p)

xsp The number of containers of order p carried via service s

zqrp The number of containers of order p that have to be transshipped between preceding services

q and succeeding service r
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ys �
X

p2cðp2PÞ
xsp 8s 2 dðs 2 SÞ ð8Þ

X

p2P

X

s2
dðs2Sji¼njj¼nÞ

xsp�2
X

p2P

X

q2
dðq2Sji¼nÞ

X

r2
dðr2Sjj¼nÞ

zqrp¼nn 8n2N

ð9Þ

Ds þ ts � As � Lð1� ysÞ 8s 2 dðs 2 SÞ
Aq þ tjx

qp þ tjx
rp � 2tjz

qrp � delayqrp � Dr � Lð1� yqpÞ� Lð1� yrpÞ
8q 2 dðs 2 Sjj 2 NÞ;

ð10Þ

p 2 P; r 2 dðs 2 Sji 2 NÞ ð11Þ

Ds � yspCp
release � 0 8p 2 P; s 2 dðs 2 Sji 2 NþÞ ð12Þ

As � a
p
delay � Cp

duetime � Lð1� yspÞ 8p 2 P; s 2 dðs 2 Sji 2 N�Þ ð13Þ

ADp �As � Lð1� yspÞ 8p 2 P; s 2 dðs 2 Sji 2 N�Þ ð14Þ

Ts
miny

s �Ds � Ts
maxy

s 8s 2 S ð15Þ

delayqrp � yqpL 8q 2 S; r 2 S; p 2 P ð16Þ

delayqrp � yrpL 8q 2 S; r 2 S; p 2 P ð17Þ

ys; ysp ¼ 0; 1f g 8s 2 S; q 2 S; r 2 S; p 2 P ð18Þ

a
p
delay; x

sp; zqrp; delayqrp;Ds;As;ADp � 0 8s 2 S; q 2 S; r 2 S; p 2 P: ð19Þ

Constraints (2)–(4) handle the movement of containers. While constraints (2) and

(3) focus on the origin and destination nodes, constraint (4) manages the trans-

shipment. Demand, in that regard, is positive if more containers are planned to

originate from a specific node than are destined for that node. Constraint (5) ensures

that capacity limits of services are adhered to. Constraints (6)–(8) make sure that a

service is only allowed to process any amount of containers when it is selected.

While (9) tracks the transshipment necessary, constraints (10) and (11) ensure the

timely sequencing of the services within the network. As seen in (10), each service

has interrelated departure, service and arrival times. In addition to the synchro-

nization at nodes in terms of loading units [(2)–(4)], constraint (11) takes care of the

timely synchronization. It ensures the relation of sequential services at a trans-

shipment location. This is necessary due to more or less fixed schedules of services,

which permit services with earlier departure times than possible preceding services

from following up on them. Constraints (12) and (13) provide the time frame for
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each order to plan within. The lower limit (earliest pick-up time) is fixed while the

upper limit (due date) can be bent, with penalties - if desired - allocated to late

deliveries (a
p
delay). Constraint (14) defines the arrival time of the order to the des-

tination which is dependent on the arrival of the last service which the order is

carried on. Constraint (15) gives the time window within which services can depart

with Ts
min ¼ Ts

max being valid for scheduled services. Constraints (16) and (17)

ensure that the feasibility of two consecutive services is only checked if these

services are designated to be used within the same routing plan. The domain of the

decision variables is given in constraints (18) and (19).

3.2 The simulation model

Simulation model represents the second step of the solution methodology where the

travel time uncertainty is considered. In contrast to the simulation models described

in Sect. 2, which are used to estimate a value of a certain variable, the objective of

this simulation model is rather to evaluate the reliability of a transportation plan by

checking its feasibility under different travel time scenarios. Since the simulation

model does not optimize the plans but only checks them and chooses the pre-defined

option in case of infeasibility, it allows to increase the significance of the results by

running a high number of scenarios in a relatively short time.

The simulation is modeled using the Anylogic University 7.2.0 software

(Borshchev 2013) which is a Java-based simulation tool that supports the most

common simulation methodologies (e.g., discrete-event, agent-based and system

dynamics) and their combinations. In order to represent the complex intermodal

transportation network and the associated processes, a combination of agent-based

and discrete-event simulation is used. Within this framework, the agents represent

entities that can have different states depending on the current activity which the

entity is executing or on a decision which has to be made. The discrete-event

processes are mainly used to represent the connection of the container with a certain

vehicle during the loading, transportation and unloading processes including also

waiting and travel times. The agents used in the simulation are terminals, vehicles

and containers.

The population of Terminal agents represents the terminals in the intermodal

network which can serve either as origin, destination or transshipment point for an

order. Each terminal can be uniquely identified by its ID number and its

characteristics include the name, transshipment time, costs and CO2e emissions per

transshipped container. Since a Geographic Information System (GIS) is also a part

of Anylogic, each terminal can be visualized on a map with its exact geographic

coordinates.

The population of Vehicles comprises all types of vehicles that can be operated

on a transportation network. The agents of type Vehicle can be either trucks, trains

or vessels. All of them are characterized by the ID of the service which they are

operated on, origin and destination terminal with their specific IDs, distance,

departure time, transportation costs and CO2e emissions per container as well as the

capacity of each vehicle. The travel time uncertainty is represented by the three

500 M. Hrušovský et al.
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possible travel time realizations with their correspondent probabilities that are also

stored as parameters for each service. At the initialization of each service, one travel

time realization is randomly chosen according to the probability distribution.

Whereas trains and vessels have their departure times fixed according to a database,

trucks are assumed to be available when they are needed. Therefore they are waiting

in the terminal until an order is available for using them.

Container is an agent representing an order or a group of containers from an

order which are transported on the same route determined by the transportation plan

resulting from the optimization model. The information required for simulating the

route of the Container comprises the unique identification in form of order ID and

group ID, the origin and destination of the order, release and due time as well as in-

transit inventory costs, penalty costs for late delivery and total number of containers.

The route is defined as a sequence of services which have to be used in order to

arrive to the final destination.

The simulation process is displayed in Fig. 2. Each Container agent starts in its

terminal of origin (Terminal A) where it is waiting for the first service of its plan

(represented by a Vehicle agent). When the service arrives, Container is loaded onto

the Vehicle and transported to the next planned terminal (Terminal B) whereby the

travel time is chosen randomly from the possible states. After the arrival to the next

terminal, the Container is unloaded and the Vehicle is discarded since it has reached

its final destination. At this stage it has to be decided for the Container whether it

has also arrived at the planned final destination or whether further transportation is

required. If the transportation has to be continued, the current terminal is again

considered as origin and the Container has to wait for the next service. If the next

service has already left before the Container is ready for further transportation, the

original transportation plan becomes infeasible and an alternative solution has to be

chosen. In this case it is assumed that an extraordinary truck service is organized

which carries the Container directly to the final destination. However, since this

Fig. 2 An overview of the simulation model
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extraordinary truck is not planned in advance, the costs of this service are higher in

comparison to a planned truck on the same route in order to reflect the need for

organizing a truck service in very short time which usually causes higher costs in

reality. For this a truck matrix consisting of all possible connections between two

terminals within the network with their respective costs, travel times and CO2e

emissions is part of the simulation model. When the Container reaches its final

destination, the total transportation costs, CO2e emissions and arrival time are

recorded to evaluate the costs of the transportation plan and the agent is discarded.

Within one simulation run, all services and orders are simulated using the

randomly chosen travel times. In order to evaluate the reliability of a plan, the

simulation runs are repeated a certain number of times using different travel time

combinations. In each simulation run, the total costs (including transportation costs,

in-transit inventory costs, penalty costs for late arrival and emission costs) and the

feasibility of the plan are recorded for each order. After the experiment is finished,

the results for each order are evaluated based on two criteria: the number of runs in

which the plan was infeasible and the average additional costs of this infeasibility in

comparison to the optimal deterministic solution. If the number of scenarios where

the plan was not feasible and the average total costs exceed a certain threshold

defined in advance, the plan is not reliable and the particular order is sent back to the

optimization model to find a new and reliable route. The orders with reliable plans

are saved for transportation execution and the capacity of services which are used by

these orders is updated. For the plans which are not reliable, the sequence of

services is stored and sent to the optimization model in order to avoid the choice of

this plan repeatedly. For this, an additional constraint per each unreliable route is

added to the mathematical model as stated below.
X

s2dðs2SkÞ
xsk � jKkj � 1 8k 2 K; ð20Þ

where K is the set of orders which have unreliable routes and jKkj is the number of

services used for order k, which has at least one unreliable route.

3.3 Combination of optimization and simulation model

The solution procedure combining the two models presented before is shown in

Fig. 3. Although each model is run on a different specialized software, both have

access to the same database consisting of the characteristics of terminals, services

and orders which is continuously updated based on the generated solutions. The data

exchange between the models is done through text files in which the output of one

model is saved and then used as the input for the second model. In order to start the

process, a database with the relevant transportation network for the given set of

orders p 2 P consisting of services s 2 S and terminals i; j 2 N has to be defined.

In this database, for each terminal its ID, costs, time and emissions for each

transhipment are recorded. Services are defined by their ID, origin, destination,

capacity, time window for departure, travel time, costs emissions and vehicle ID

which is operated on a certain service. The created orders are defined by origin,
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destination, demand (number of TEU), release and due time, in-transit inventory

and penalty costs. Based on this input data, the optimization model is used to obtain

the transportation plans based on uncongested deterministic travel times assuming

the ideal state of the transportation network without any disruptions. In this way the

optimal plan is obtained relatively quickly and additional constraints connected to

travel time uncertainty which might limit the size of the instances that can be solved

to optimality can be avoided. For each order in the optimal deterministic plans, the

optimal sequence of services (ysp [ 0) is recorded that serves as an input for the

simulation model.

After obtaining the routes from the optimization model, the simulation model is

used for evaluating the reliability of the created plans under uncertainty. For this,

the minimal optimal costs for each deterministic plan are calculated and the travel

time of each service is modeled as a random variable that can take one of three

possible travel time values (i.e., uncongested, congested or disrupted) which can be

chosen according to their probability of occurrence. During the simulation, multiple

runs of the simulation model are executed in order to consider different possible

travel time combinations for all services in the transportation network. Within each

run, the optimal deterministic route for each order is simulated in order to see

whether the plan is still feasible under the chosen travel time realizations. If a plan

becomes infeasible (e.g., the subsequent service is missed due to the late arrival of

the container to a terminal), it is assumed that containers are delivered directly from

the current terminal to the destination by an extraordinary truck service. In this way

not only the reliability of the plan but also the additional costs in case of infeasibility

can be estimated.

At the end of the simulation phase, the reliability of the plans is evaluated based

on the number of scenarios with infeasible plans and the additional costs of

infeasiblity as described in Sect. 3.2. These criteria are decisive for classifying a

transportation plan as reliable or not reliable. Transportation plans which are

Optimization
model

Simulation 
model

Deterministic 
transportation plans

P,ysp>0

Orders with unreliable transpor-
tation plans + service sequence

ysp>0,

Orders with reliable
transportation plans

Prel,ysp>0, , 
,

Service capacity
updates

ysp>0,dp

Orders
P,i,j,dp,Γp

release ,
Γp

duetime ,cp
pen , 

cp
inv

Services
S,i,j,caps,Ts

min,
Ts

max,ts,cs,es,v

Terminals
N,tj,cj,ej

Model inputs

Data exchange between models

Model outputs

Fig. 3 An overview of the combined optimization and simulation models
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reliable (Prel) leave the optimization process and are fixed for execution which

means that the service capacity used by these plans has to be blocked and cannot be

used for other orders. Therefore, the free capacities of the services used by reliable

transportation plans have to be updated in the database before the next optimization

is executed. After that transportation plans which are not reliable (Punrel) are sent

back to the deterministic optimization model and the whole optimization process

starts from the beginning. In order to prevent the repeated choice of the unreliable

plan by the optimization model, the service sequence of the unreliable plan is also

used as input for the optimization model and is handled in an additional constraint

(see Sect. 3.2) so that an alternative plan has to be chosen. This process is repeated

until a reliable plan is found for all orders. If there is no feasible and reliable route

for an order in the considered network, a direct transportation by truck is used as a

default option.

4 Computational results

In order to test the capabilities of the presented solution approach, a case study using

intermodal transportation network with services based on real-world schedules and

routes has been developed. The network covers mainly the region of Central Europe

with terminals located in Hungary, Slovakia, Czech Republic, Austria and Germany

but also two maritime ports in Koper (Slovenia) and Trieste (Italy). These terminals

are connected by a number of services which are usually used as feeder services to

collect containers for direct trains going to the big maritime harbors in Western

Europe (e.g., Rotterdam, Hamburg, Antwerp). The network consists mainly of rail

services based on publicly available schedules which are extended by planned truck

connections. Since the examined region is located around the Danube and other

important European rivers, inland waterway services between different ports on the

Rhine–Main–Danube axis were also considered as an option. The basic transporta-

tion network with railway and inland waterway connections and terminals is

displayed in Fig. 4. Considered road services are not depicted in the figure due to

the complexity reasons.

The process of finding the optimal and reliable transportation plans was tested on

different instances with varying number of services and orders. The basic network

consists of 20 terminals, 50 services and one order, but the number of services can

be increased up to 500 and the maximal number of orders considered at the same

time was 20. The examined instances are based on instances presented in Demir

et al. (2016) in order to be able to compare the results between SAA and the

presented hybrid simulation–optimization approach. The schedules and planned

travel times of trains are based on Kombiverkehr (2014) and Metrans (2014). For

travel times and distances on road PTV Map and Guide (PTV 2014) was used and

data regarding inland waterway services is based on via donau (2007). The

transportation costs for each service were estimated using information from PTV

(2014), PLANCO (2007) and via donau (2007). For the in-transit inventory costs 1

EUR per hour and order was assumed in order to be able to differentiate between

different routes with different transportation times. The simulation model was run

504 M. Hrušovský et al.
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100 times for each instance and this was repeated 10 times in order to get

statistically significant results. Transportation plans were considered as not reliable

if the average number of infeasible plans was higher than 5% and the difference in

average total costs in comparison to deterministic solution was also more than 5%.

Since transportation planning is an operative activity which has to be conducted

multiple times per day, the time needed for obtaining the results is an important

factor when evaluating the performance of the model. Therefore, at the beginning an

analysis of computational times was performed for all instances which is displayed

in Table 3. The analysis was conducted on an Intel(R) Core(TM) i5-5300U CPU

with 2.3 GHz and 8 GB of memory. The deterministic optimization model was

solved using CPLEX 12.6 (IBM ILOG 2016) and the simulation was run in

Anylogic University 7.2.0 (AnyLogic 2016). For the simulation model, three

different sample sizes were analyzed: 10 runs which were also used by Demir et al.

(2016), 100 runs which offer more stable results in comparison to 10 runs, and 1000

runs which lead to similar results as 100 runs. In order to compare these

computational times with the SAA method, also the reported average computational

times for stochastic model in Demir et al. (2016) are included in the table.
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Fig. 4 Rail and inland waterway services within the intermodal transportation network
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As it can be seen in Table 3, we could solve all instances up to 250 services and

20 orders with the deterministic optimization model, instances with 500 services

could not be solved by the optimization model due to memory problems (indicated

by X in the table). However, the computational times for 500 orders could be

determined for simulation model. In general the results show that the computational

times are increasing with the complexity of the instances, however, the increase

differs significantly between the presented models. Whereas the deterministic

optimization model finds an optimal solution in less than 5 seconds for most of the

instances, the stochastic SAA method also starts with low computational times for

small instances but these times tend to grow exponentially as it seems to be very

sensitive to the increasing number of orders. In contrast to that, the computational

times for simulation model are higher for smaller instances, but they are relatively

stable with the growing complexity. Besides that, increasing the number of

scenarios is not a problem for the simulation model whereas it is a limiting factor for

the SAA approach. Therefore the simulation–optimization approach is more

Table 3 Computational times for network with 20 terminals

Service Order Deterministic optimization

CPU time in seconds

SAA CPU time for 10

scenarios in seconds

Simulation CPU time

in seconds for

10

runs

100

runs

1000

runs

50 1 0.06 0.64 7.18 28.70 221.32

50 2 0.08 0.60 7.20 29.18 201.75

50 5 0.24 0.93 7.55 28.48 202.02

50 10 0.30 1.48 9.40 34.50 240.00

50 20 0.57 1.99 9.40 36.50 236.70

100 1 0.18 0.89 8.90 34.00 250.10

100 2 0.25 1.27 8.80 35.80 247.40

100 5 0.39 2.48 9.00 35.40 248.70

100 10 0.68 38.97 9.60 38.50 258.70

100 20 1.40 112.27 9.90 36.80 264.60

250 1 0.39 1.48 8.90 34.40 261.20

250 2 0.71 5.00 9.80 37.00 259.70

250 5 1.62 24.86 9.20 37.20 262.20

250 10 4.29 X 10.50 37.90 255.90

250 20 26.38 X 10.20 43.90 281.00

500 1 X 10.20 11.90 54.40 423.30

500 2 X X 11.90 53.90 432.40

500 5 X X 13.20 54.10 430.90

500 10 X X 13.10 54.80 427.90

500 20 X X 13.50 55.90 454.40

X: not solved to optimality due to the time limit (60 min) or memory problem
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123



favorable for more complex instances which correspond to the realistic problem

sizes usually solved by transportation planners.

Besides the computational times, the quality of the solutions has also been

evaluated. Transportation plans on the network with 20 terminals for each of the

instances between 50 and 250 services and 1 to 20 orders were optimized according

to the three different objectives: transportation costs (1, 0, 0), time (0, 1, 0) and

CO2e emissions (0, 0, 1). In addition to that, also the combination of all three

objectives with equal weights (1, 1, 1) has been tested, but the results showed that

the plans for this alternative are equal to the optimization according to

transportation costs due to the fact that the transportation costs are much higher

in comparison to time and emission costs. Table 4 presents the results for

transportation costs optimization and emissions optimization which can be easily

compared to the results of the SAA approach since the objective function of the

optimization model was not changed for these two objectives. This is also confirmed

by the fact that the results of optimization match the results of the deterministic

model reported in Demir et al. (2016) and are shown in the first column for each

objective.

Whereas the results for optimization model are the same, the results for SAA and

simulation model show differences. This is due to the fact that the simulation model

evaluates the reliability of the plans based on two criteria and therefore also plans

might be accepted that become infeasible in more than 5% of the simulation runs,

but the total cost change is very small. This might be the case when, e.g., there is a

service which occasionally arrives slightly late to the destination of the order.

Nevertheless, this small delay might be acceptable if the next alternative plan is

much more expensive. Whereas this plan can be accepted by the simulation–

optimization model, the SAA approach would ignore this alternative and choose a

more expensive plan since the decision there is based solely on the number of

infeasible scenarios.

The differences in results for transportation costs are mainly visible for the

network of 20 terminals and 50 services which offers only limited number of

alternatives (mostly one or two) for each order. In this case if the alternatives are

evaluated as unreliable, the simulation model offers a direct truck connection (based

on the truck service matrix for extraordinary services) as the best alternative which

might result in higher but also in lower costs compared to the original plan

depending on the origin and destination of the order. Therefore the total costs of the

plans after simulation are increasing for the instance with 5 and 10 orders, but there

is a slight decrease of the costs for 20 orders since for some of them the direct truck

(which is not available in the initial network with 50 services) is a cheaper and more

reliable option. A similar situation can be observed in case of emission

minimization, where the emissions after simulation are increasing due to the use

of direct truck transportation on routes where combination of train or vessels is

evaluated as unreliable. Although this might be not completely supporting the idea

of combining different modes in intermodal transportaqtion, avoiding transportation

plans which are not reliable and using direct trucks in cases without other

alternatives helps to reduce the disruptions in supply chains. In this way the decision

maker can compare different options and choose the intermodal transportation only
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if it is reliable. The information about the reliability of the plan might then increase

the motivation of transportation planners to choose the more complex but maybe

also cheaper intermodal alternative in comparison to direct transportation by truck.

Table 4 also shows that the increasing number of services has a positive impact

on costs as well as emissions since the number of transportation alternatives is

increasing. Therefore not only cheaper but also more reliable alternatives might

become available which means that the differences between the optimization result

and the costs of the plans after simulation are decreasing. If a network of 250

services is used, the results show that only very small additional costs (less than 1%)

have to be paid due to unreliability of the transportation plans.

In addition to transportation costs and emissions, also the time objective was

considered where the in-transit inventory costs for transportation time have been

added as described in Sect. 3. Due to this change, a direct comparison to the results

of SAA analysis is not possible. Therefore, instead of comparing SAA and

simulation results, only results for simulation are presented using two different

travel time distributions as mentioned in Sect. 2: a discrete three-point distribution

used in the whole computational study and a continuous shifted exponential

distribution. In order to obtain the shifted exponential distribution, three intervals

(uncongested, congested, disrupted) were created with borders located in the middle

between the discrete travel times for each state and probabilities corresponding to

the discrete ones. After that the exponential distribution was fitted to these intervals

so that it is shifted to the right starting at the point of the uncongested travel time

that is the shortest possible travel time a service can have. The two different

distributions are illustrated in Fig. 5.

The results for time optimization are presented in Table 5, where only instances

with up to 100 services could be solved by the simulation–optimization approach.

For instances with 250 services no optimal solution could be found within one hour

of running the model. The results show that there is a strong preference for using

truck services since their departures are flexible and travel times are usually very

fast. Therefore sometimes combination of three trucks can be preferred before a

direct train connection which might leave too late or take too long. Similarly, a

vessel connection from the transportation costs optimal plan can be replaced by

various truck or train services.

When comparing the discrete and continuous travel time distribution, three trends

could be observed: firstly, the average time costs after simulation are in general

slightly higher for the continuous distribution due to the fact that the uncongested

time is only the minimal travel time and most travel times are higher. Secondly, in

cases where the number of infeasible scenarios is higher than 5% but the cost

increase is very low, the exponential distribution tends to decrease the number of

infeasible scenarios. The explanation for this is probably that here only the discrete

disrupted travel time causes infeasibility which has now a lower probability of

occurrence since the probability is distributed over a bigger interval. Thirdly, if the

travel time border causing infeasibility is located between uncongested and

congested time, the number of infeasible runs is increasing in case of continuous

distribution. In that case more re-planning is necessary which results in more direct

trucks especially in smaller networks. This is also visible in Table 5 where the
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unreliable plans are included in instances with 10 and especially with 20 orders, so

that the costs in case of exponential distribution are lower due to increased use of

cheaper direct trucks in comparison to discrete distribution for the instance with 100

services and 20 orders.

In order to better illustrate some of the transportation plans and possible changes

due to unreliability as described in the previous paragraphs, selected orders are

presented in Table 6 with their respective plans for each individual objective

resulting from optimization model and also from the changes after their evaluation

by the simulation model. These orders were tested on a network with 20 terminals

and 100 services.

Travel �meDisruptedCongestedUncongested

f(X)

Travel �me
DisruptedCongestedUncon-

gested

f(X)

(a) (b)

Fig. 5 Discrete versus continuous travel time distribution. a Discrete three-point distribution,
b continuous shifted exponential distribution

Table 5 Results for time optimization for different number of services and different distributions

Services Orders Optimization

objective

value (€)

Discrete three-point distribution Continuous shifted exponential

distribution

Simulation

objective

value (€)

Difference

optimization

versus simulation

(%)

Simulation

objective

value (€)

Difference

optimization

versus

simulation (%)

50 1 65.24 67.43 3.36 66.51 1.94

50 2 149.69 152.35 1.77 151.85 1.44

50 5 541.82 390.45 -27.94 395.22 -27.06

50 10 1099.54 960.46 -12.65 914.47 -16.83

50 20 2300.92 2001.10 -13.03 1895.91 -17.60

100 1 65.24 67.43 3.36 66.42 1.80

100 2 149.69 152.35 1.77 151.82 1.42

100 5 366.57 372.96 1.74 375.21 2.36

100 10 533.63 547.63 2.62 555.07 4.02

100 20 1229.94 1368.77 11.28 1170.95 -4.80
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As the routes for individual orders show, the plans and their reliability can vary

significantly. Whereas in case of order 1 a direct truck service 94 is the best option

for all objectives to transport goods on the short distance between Koper and

Trieste, a direct train service 40 is not the preferred option for time optimization in

case of order 2. The main reason for this is the late departure of the cost and

emissions minimizing train service, so that a combination of three trucks (84, 100

and 81) with flexible departures brings the goods faster to the customer but results in

more than 115% increase in total costs. However, as this route does not show any

infeasible runs in the simulation model, it is evaluated as reliable and therefore can

be used since time is the only important factor here.

This is not true for order 3, where the combination of train services 34 and 37

between Duisburg and Plzen is not reliable because of the delays of the first service

and short buffer time at the intermediate terminal. In addition, the due time of the

order might be also violated if service 37 is delayed. These infeasibilities lead to

transportation costs which are on average more than 5% higher in comparison to the

costs resulting from optimization. Therefore an alternative plan has to be found,

which in this case might be the combination of train services 71 and 37 that is also

used for emission minimization. The only difference here is that service 71 departs

earlier than the original service 34 and therefore there is enough time for

transshipment at the intermediate terminal. The unreliable simulation runs result

only from an occasional delay of service 37 at the destination which might be

Table 6 Selected orders and their evaluation in a network with 20 terminals and 100 services

Order Weight

(w1, w2,

w3)

Origin,

destination

Optimal

services per

order after

optimization

Total

optimization

costs (€)

Average

number of

infeasible

simulation

runs

Average

total costs

after

simulation

(€)

Diff.

(%)

1 (1, 0, 0) Koper(SI) 94 515.94 0 516.08 0.00

(0, 1, 0) Trieste(IT) 94 515.94 0 516.07 0.00

(0, 0, 1) 94 515.94 0 516.07 0.00

2 (1, 0, 0) Villach(AT) 40 1517.14 0 1521.4 0.28

(0, 1, 0) Wels(AT) 84, 100, 81 3301.39 0 3302.47 0.03

(0, 0, 1) 40 1517.14 0 1521.92 0.31

3 (1, 0, 0) Duisburg(DE) 34, 37 953.07 11 1002.93 5.23

(0, 1, 0) Plzen(CZ) 95, 96, 98,

75

2823.83 0 2826.69 0.10

(0, 0, 1) 71, 37 960.79 6 961.58 0.08

4 (1, 0, 0) Budapest(HU) 47, 1, 60 2332.32 0 2333.33 0.04

(0, 1, 0) Villach(AT) 29, 92 2267.94 0 2269.44 0.06

(0, 0, 1) 32, 17 2460.72 0 2463.56 0.12

5 (1, 0, 0) Villach(AT) 23, 24, 38 675.09 24 662.77 -1.82

(0, 1, 0) D. Streda(SK) 23, 24, 38 675.09 26 658.7 -2.42

(0, 0, 1) 23, 24, 38 675.09 25 660.56 -2.15
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acceptable since the only more reliable alternative in this case would be the direct

truck with higher costs and emissions.

Another unreliable route is computed by the optimization model for order 5

where the same route is proposed for all three objectives, combining three train

services 23, 24 and 38 on a route between Austria and Slovakia. Due to the delays of

the trains, the plan becomes infeasible in 25% of the cases on average and the goods

have to be delivered to the destination by an extraordinary truck. However, the total

costs suggest that considering a direct truck (originally not included in the network)

might be even a more favourable option since the total costs are decreasing.

The example of order 4 shows how different objectives influence the optimal

routes when multiple reliable alternatives exist. In case of cost optimization, goods

are transported by truck 47 to the port in Budapest from where they are brought by

vessel 1 to Vienna and then delivered to Villach by train 60. If time is important, it

might be faster to go by train 29 to Munich and then use a fast truck 92 to Villach. In

case of emission minimization, the cost-optimal route is replaced by two electric

trains 32 and 17 with transshipment in Wels due to the higher emissions of inland

vessel in the upstream direction between Budapest and Vienna.

5 Conclusions

Intermodal transportation can be considered as an alternative to the traditionally

used road transportation which is exposed to delays and disruptions due to

increasing traffic volumes on the transportation network. Although intermodal

solutions offer efficient transportation chains combining cheap and sustainable

modes (e.g., train, inland waterway) with last-mile truck services, the complexity of

the network requires higher coordination effort and reliable transportation plans that

can ensure timely delivery of the goods to the terminals. In order to solve this

problem we proposed a hybrid simulation and optimization approach to investigate

the intermodal transportation planning problem in a stochastic and dynamic

environment. In order to provide greener transportation solutions for the investi-

gated problem, we aimed to optimize the transportation plan by increasing the

reliability in terms of travel time uncertainty. We have validated the proposed

methodology on a real-life case study. Our results indicate that the proposed

methodology is capable of generating reliable solutions that compare favorably with

solutions generated by a deterministic formulation. To evaluate the effectiveness of

the proposed approach, we used different sets of instances based on real geographic

data. The results show that the proposed algorithm is highly effective in finding

good-quality and reliable solutions on instances with up to 20 locations and 250

transportation services.

Based on the used methodology, the following conclusions can be presented:

• The integration among transportation modes, such as road, rail and waterway

transportation, potentially increases harmonization efforts for multiple trans-

portation users. This could be achieved by considering not only monetary costs

512 M. Hrušovský et al.
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but also customer satisfaction (i.e., timely delivery), and environmental concerns

of the transportation.

• Despite the advantages of shifting of freight from road to rail or waterway

transportation, there are still a number of challenges which need to be overcome.

It is especially important to improve the coordination and reliability of the

transportation by providing reliable and consistent data (e.g., lack of real-time

data) and developing models which are capable of creating reliable transporta-

tion plans. In this way the number of disruptions within supply chains can be

reduced which results in smoother processes and cost savings.

• Although the presented approach attempts to eliminate the need for re-planning

in case of disruptions during the transportation execution, it is not capable of

capturing all possible disruptions. Especially disruptions which occur very rarely

but have high impact on travel times cannot be considered directly in the

proposed model since the resulting plans would include unnecessary long buffer

times. Therefore an effective re-planning algorithm has to be developed which

can be executed quickly in cases where a disruption not covered by the travel

time distribution happens.

• The presented results show that the combination of optimization and simulation

is capable to find the solution of complex instances and gives a better overview

about the reliability of the plans and possible reasons for disruptions. The

combination of two criteria for reliability evaluation enables to identify plans

that might become infeasible but where the additional costs for unreliability are

very low and much cheaper in comparison to the next best alternative. In

contrast to that, the model also shows routes where the intermodal alternative is

highly unreliable and therefore a use of direct truck transportation might be

more favorable for the customer.
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