31,068 research outputs found
Dynamics of the superfluid to Mott insulator transition in one dimension
We numerically study the superfluid to Mott insulator transition for bosonic
atoms in a one dimensional lattice by exploiting a recently developed
simulation method for strongly correlated systems. We demonstrate this methods
accuracy and applicability to Bose-Hubbard model calculations by comparison
with exact results for small systems. By utilizing the efficient scaling of
this algorithm we then concentrate on systems of comparable size to those
studied in experiments and in the presence of a magnetic trap. We investigate
spatial correlations and fluctuations of the ground state as well as the nature
and speed at which the superfluid component is built up when dynamically
melting a Mott insulating state by ramping down the lattice potential. This is
performed for slow ramping, where we find that the superfluid builds up on a
time scale consistent with single-atom hopping and for rapid ramping where the
buildup is much faster than can be explained by this simple mechanism. Our
calculations are in remarkable agreement with the experimental results obtained
by Greiner et al. [Nature (London) 415, 39 (2002)].Comment: 14 pages, 11 figures, RevTex 4. Replaced with published versio
Faster annealing schedules for quantum annealing
New annealing schedules for quantum annealing are proposed based on the
adiabatic theorem. These schedules exhibit faster decrease of the excitation
probability than a linear schedule. To derive this conclusion, the asymptotic
form of the excitation probability for quantum annealing is explicitly obtained
in the limit of long annealing time. Its first-order term, which is inversely
proportional to the square of the annealing time, is shown to be determined
only by the information at the initial and final times. Our annealing schedules
make it possible to drop this term, thus leading to a higher order (smaller)
excitation probability. We verify these results by solving numerically the
time-dependent Schrodinger equation for small size systemsComment: 10 pages, 5 figures, minor correction
Convergence of Quantum Annealing with Real-Time Schrodinger Dynamics
Convergence conditions for quantum annealing are derived for optimization
problems represented by the Ising model of a general form. Quantum fluctuations
are introduced as a transverse field and/or transverse ferromagnetic
interactions, and the time evolution follows the real-time Schrodinger
equation. It is shown that the system stays arbitrarily close to the
instantaneous ground state, finally reaching the target optimal state, if the
strength of quantum fluctuations decreases sufficiently slowly, in particular
inversely proportionally to the power of time in the asymptotic region. This is
the same condition as the other implementations of quantum annealing, quantum
Monte Carlo and Green's function Monte Carlo simulations, in spite of the
essential difference in the type of dynamics. The method of analysis is an
application of the adiabatic theorem in conjunction with an estimate of a lower
bound of the energy gap based on the recently proposed idea of Somma et. al.
for the analysis of classical simulated annealing using a classical-quantum
correspondence.Comment: 6 pages, minor correction
Dual Superconductor Mechanism of Confinement on the Lattice
We investigate the dual superconductor mechanism of confinement for pure
SU(2) lattice gauge theory in the maximally abelian gauge. We focus on the the
dual Meissner effect. We find that the transverse distribution of the
longitudinal chromoelectric field due to a static quark-antiquark pair
satisfies the dual London equation. Moreover we show that the size of the flux
tube scales according to asymptotic freedom.Comment: LaTeX, 9 pages, 6 figures available as a PostScript file from L.
Cosmai, BARI - TH 110/9
Propriedades físicas e infiltração de água de um Latossolo Vermelho Amarelo (Oxisol) do noroeste do estado de São Paulo, Brasil, sob três condições de uso e manejo
This study presents the results obtained in a field experiment carried out at Glicério, Northwest of São Paulo state, Brazil, whose objective was to analyze changes of selected soil physical properties and water infiltration rates on a Yellow-Red Latosol, under three different management conditions. The experimental design was arranged as completely randomized split-block with twelve treatments, which corresponded to four depths (0-0.05 m; 0.05-0.10 m; 0.10-0.20 m and 0.20-0.40 m) and three conditions of soil use and management with four replications. The soil surface conditions were: conventional tillage (one disking with moulboard plus two levelling passes with harrow), nine months before starting filed experiences; recent conventional tillage (also one disking with moulboard plus two levelling passes with harrow) and native forest. The conventional tillage areas were cropped for about fifteen years with annual cultures. The considered soil general physical properties were: macroporosity, microporosity, total porosity, bulk density, soil moisture and penetration resistance and, in addition; soil water infiltration rates were also recorded. According to our results, differences on general soil physical properties and infiltration rates appeared when both tilled sub-treatments and native forest were compared. Both, plots recently prepared by conventional tillage and those prepared by tillage but left nine months in rest, presented a statistically significant decrease of constant (final) water infiltration rates of 92.72% and 91.91% when compared with native forest plots
Magnetic phase transition in V2O3 nanocrystals
V2O3 nanocrystals can be synthesized through hydrothermal reduction of
VO(OH)2 using hydrazine as a reducing agent. Addition of different ligands to
the reaction produces nanoparticles, nanorods and nanoplatelets of different
sizes. Small nanoparticles synthesized in this manner show suppression of the
magnetic phase transition to lower temperatures. Using muon spin relaxation
spectroscopy and synchrotron x-ray diffraction, it is determined that the
volume fraction of the high-temperature phase, characterized by a rhombohedral
structure and paramagnetism, gradually declines with decreasing temperature, in
contrast to the sharp transition observed in bulk V2O3.Comment: 6 pages, 6 figure
Maximally symmetric stabilizer MUBs in even prime-power dimensions
One way to construct a maximal set of mutually unbiased bases (MUBs) in a
prime-power dimensional Hilbert space is by means of finite phase-space
methods. MUBs obtained in this way are covariant with respect to some subgroup
of the group of all affine symplectic phase-space transformations. However,
this construction is not canonical: as a consequence, many different choices of
covariance sugroups are possible. In particular, when the Hilbert space is
dimensional, it is known that covariance with respect to the full group
of affine symplectic phase-space transformations can never be achieved. Here we
show that in this case there exist two essentially different choices of maximal
subgroups admitting covariant MUBs. For both of them, we explicitly construct a
family of covariant MUBs. We thus prove that, contrary to the odd
dimensional case, maximally covariant MUBs are very far from being unique.Comment: 22 page
Biexcitons in two-dimensional systems with spatially separated electrons and holes
The binding energy and wavefunctions of two-dimensional indirect biexcitons
are studied analytically and numerically. It is proven that stable biexcitons
exist only when the distance between electron and hole layers is smaller than a
certain critical threshold. Numerical results for the biexciton binding
energies are obtained using the stochastic variational method and compared with
the analytical asymptotics. The threshold interlayer separation and its
uncertainty are estimated. The results are compared with those obtained by
other techniques, in particular, the diffusion Monte-Carlo method and the
Born-Oppenheimer approximation.Comment: 11 pages, 7 figure
- …