105 research outputs found

    A high affinity, antidote-controllable prothrombin and thrombin-binding RNA aptamer inhibits thrombin generation and thrombin activity: An antidote-controllable prothrombin RNA aptamer

    Get PDF
    The conversion of prothrombin to thrombin is one of two non-duplicated enzymatic reactions during coagulation. Thrombin has long been considered an optimal anticoagulant target because it plays a crucial role in fibrin clot formation by catalyzing the cleavage of fibrinogen, upstream coagulation cofactors, and platelet receptors. Although a number of anti-thrombin therapeutics exist, it is challenging to use them clinically due to their propensity to induce bleeding. Previously, we isolated a modified RNA aptamer (R9D-14) that binds prothrombin with high affinity and is a potent anticoagulant in vitro

    Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy

    Get PDF
    The human APOBEC3G is an innate restriction factor that, in the absence of Vif, restricts HIV-1 replication by inducing excessive deamination of cytidine residues in nascent reverse transcripts and inhibiting reverse transcription and integration. To shed light on impact of A3G-Vif interactions on HIV replication, we developed a multi-scale computational system consisting of intracellular (single-cell), cellular and extracellular (multicellular) events by using ordinary differential equations. The single-cell model describes molecular-level events within individual cells (such as production and degradation of host and viral proteins, and assembly and release of new virions), whereas the multicellular model describes the viral dynamics and multiple cycles of infection within a population of cells. We estimated the model parameters either directly from previously published experimental data or by running simulations to find the optimum values. We validated our integrated model by reproducing the results of in vitro T cell culture experiments. Crucially, both downstream effects of A3G (hypermutation and reduction of viral burst size) were necessary to replicate the experimental results in silico. We also used the model to study anti-HIV capability of several possible therapeutic strategies including: an antibody to Vif; upregulation of A3G; and mutated forms of A3G. According to our simulations, A3G with a mutated Vif binding site is predicted to be significantly more effective than other molecules at the same dose. Ultimately, we performed sensitivity analysis to identify important model parameters. The results showed that the timing of particle formation and virus release had the highest impacts on HIV replication. The model also predicted that the degradation of A3G by Vif is not a crucial step in HIV pathogenesis

    Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts

    Full text link

    Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor.

    No full text
    Autoimmunity often involves the abnormal targeting of self-antigens by antibodies, leading to tissue destruction and other pathologies. This process could potentially be disrupted by small ligands that bind specifically to autoantibodies and inhibit their interaction with the target antigen. Here we report the identification of an RNA sequence that binds a mouse monoclonal antibody specific for an autoantigenic epitope of human insulin receptor. The RNA ligand binds specifically and with high affinity (apparent Kd congruent to 2 nM) to the anti-insulin receptor antibody and not to other mouse IgGs. The RNA can also act as a decoy, blocking the antibody from binding the insulin receptor. Thus, it probably binds near the combining site on the antibody. Strikingly, the RNA cross-reacts with autoantibodies from patients with extreme insulin resistance. One simple explanation is that the selected RNA may structurally mimic the antigenic epitope on the insulin receptor protein. These results suggest that decoy RNAs may be used in the treatment of autoimmune diseases

    Using 5'-PTMs to repair mutant beta-globin transcripts

    No full text

    Improved gene expression upon transfer of the adenosine deaminase minigene outside the transcriptional unit of a retroviral vector.

    No full text
    This study describes a type of retroviral vector called double-copy (DC) vector that was designed to improve the expression of transduced genes. The unique feature of DC vectors is that the transduced gene is inserted within the U3 region of the 3' long terminal repeat (LTR). Consequently, in the infected cell the gene is duplicated and transferred to the 5' LTR. The important result is that in its new position the gene is placed outside the retroviral transcriptional unit, eliminating or at least reducing the negative effects of the retroviral transcriptional unit. The utility of the DC vector design was tested by using a 2.1-kilobase-pair (kbp)-long adenosine deaminase (ADA; EC 3.5.4.4) minigene that was inserted into the 3' LTR of the N2 retroviral vector, generating a 2.7-kbp-long chimeric LTR. DNA blot analysis was used to show that the chimeric LTR was faithfully duplicated in cells infected with the corresponding virus, generating two copies of the ADA minigene, one copy in each LTR. Insertion of the ADA minigene into the 3' LTR of the N2 vector led to a 10- to 20-fold increase in ADA transcripts and human ADA isozyme synthesized in NIH 3T3 cells as compared to cells harboring the same vector in which the ADA minigene was inserted between the two LTRs. A similar increase in ADA expression was observed in two human lymphoid cell lines tested, HUT 78 and Raji. These results are consistent with previous observations that upstream promoters exert an inhibitory effect on promoters placed downstream and bear out the predictions used in the design of DC vectors. The use of DC vectors may contribute to the solution of the problems encountered in expressing retrovirally transduced genes in cultured cells and, in particular, when introduced into the live animal
    • …
    corecore