219 research outputs found
Interface optical phonons in spheroidal dots: Raman selection rules
The contribution of interface phonons to the first order Raman scattering in
nanocrystals with non spherical geometry is analyzed. Interface optical phonons
in the spheroidal geometry are discussed and the corresponding Frohlich-like
electron-phonon interaction is reported in the framework of the dielectric
continuum approach. It is shown that the interface phonon modes are strongly
dependent on the nanocrystal geometry, particularly on the ellipsoid's
semi-axis ratio. The new Raman selection rules have revealed that solely
interface phonon modes with even angular momentum are allowed to contribute to
the first order phonon-assisted scattering of light. On this basis we are able
to give an explanation for the observed low frequency shoulders present in the
Raman cross-section of several II-VI semiconductor nanostructures.Comment: 8 pages, 2 figure
Coupled phonon-ripplon modes in a single wire of electrons on the liquid-helium surface
The coupled phonon-ripplon modes of the quasi-one-dimensional electron chain
on the liquid helium sutface are studied. It is shown that the electron-ripplon
coupling leads to the splitting of the collective modes of the wire with the
appearance of low-frequency modes and high-frequency optical modes starting
from threshold frequencies. The effective masses of an electron plus the
associated dimple for low frequency modes are estimated and the values of the
threshold frequencies are calculated. The results obtained can be used in
experimental attempts to observe the phase transition of the electron wire into
a quasi-ordered phase.Comment: 5 pages, 1 figure, Physical Review (in press
Hidden spin-current conservation in 2d Fermi liquids
We report the existence of regimes of the two dimensional Fermi liquid that
show unusual conservation of the spin current and may be tuned by varying some
parameter like the density of fermions. We show that for reasonable models of
the effective interaction the spin current may be conserved in general in 2d,
not only for a particular regime. Low temperature spin waves propagate
distinctively in these regimes and entirely new ``spin-acoustic'' modes are
predicted for scattering-dominated temperature ranges. These new
high-temperature propagating spin waves provide a clear signature for the
experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR
Edge magnetoplasmons in periodically modulated structures
We present a microscopic treatment of edge magnetoplasmons (EMP's) within the
random-phase approximation for strong magnetic fields, low temperatures, and
filling factor , when a weak short-period superlattice potential is
imposed along the Hall bar. The modulation potential modifies both the spatial
structure and the dispersion relation of the fundamental EMP and leads to the
appearance of a novel gapless mode of the fundamental EMP. For sufficiently
weak modulation strengths the phase velocity of this novel mode is almost the
same as the group velocity of the edge states but it should be quite smaller
for stronger modulation. We discuss in detail the spatial structure of the
charge density of the renormalized and the novel fundamental EMP's.Comment: 8 pages, 4 figure
Decoherence in trapped ions due to polarization of the residual background gas
We investigate the mechanism of damping and heating of trapped ions
associated with the polarization of the residual background gas induced by the
oscillating ions themselves. Reasoning by analogy with the physics of surface
electrons in liquid helium, we demonstrate that the decay of Rabi oscillations
observed in experiments on 9Be+ can be attributed to the polarization phenomena
investigated here. The measured sensitivity of the damping of Rabi oscillations
with respect to the vibrational quantum number of a trapped ion is also
predicted in our polarization model.Comment: 26 pdf pages with 5 figures, http://www.df.ufscar.br/~quantum
Polaron effects in electron channels on a helium film
Using the Feynman path-integral formalism we study the polaron effects in
quantum wires above a liquid helium film. The electron interacts with
two-dimensional (2D) surface phonons, i.e. ripplons, and is confined in one
dimension (1D) by an harmonic potential. The obtained results are valid for
arbitrary temperature (), electron-phonon coupling strength (), and
lateral confinement (). Analytical and numerical results are
obtained for limiting cases of , , and . We found the
surprising result that reducing the electron motion from 2D to quasi-1D makes
the self-trapping transition more continuous.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Non-perturbative electron dynamics in crossed fields
Intense AC electric fields on semiconductor structures have been studied in
photon-assisted tunneling experiments with magnetic field applied either
parallel (B_par) or perpendicular (B_per) to the interfaces. We examine here
the electron dynamics in a double quantum well when intense AC electric fields
F, and tilted magnetic fields are applied simultaneously. The problem is
treated non-perturbatively by a time-dependent Hamiltonian in the effective
mass approximation, and using a Floquet-Fourier formalism. For B_par=0, the
quasi-energy spectra show two types of crossings: those related to different
Landau levels, and those associated to dynamic localization (DL), where the
electron is confined to one of the wells, despite the non-negligible tunneling
between wells. B_par couples parallel and in-plane motions producing
anti-crossings in the spectrum. However, since our approach is
non-perturbative, we are able to explore the entire frequency range. For high
frequencies, we reproduce the well known results of perfect DL given by zeroes
of a Bessel function. We find also that the system exhibits DL at the same
values of the field F, even as B_par non-zero, suggesting a hidden dynamical
symmetry in the system which we identify with different parity operations. The
return times for the electron at various values of field exhibit interesting
and complex behavior which is also studied in detail. We find that smaller
frequencies shifts the DL points to lower field F, and more importantly, yields
poorer localization by the field. We analyze the explicit time evolution of the
system, monitoring the elapsed time to return to a given well for each Landau
level, and find non-monotonic behavior for decreasing frequencies.Comment: REVTEX4 + 11 eps figs, submitted to Phys. Rev.
Renormalization approach for quantum-dot structures under strong alternating fields
We develop a renormalization method for calculating the electronic structure
of single and double quantum dots under intense ac fields. The nanostructures
are emulated by lattice models with a clear continuum limit of the
effective-mass and single-particle approximations. The coupling to the ac field
is treated non-perturbatively by means of the Floquet Hamiltonian. The
renormalization approach allows the study of dressed states of the nanoscopic
system with realistic geometries as well arbitrary strong ac fields. We give
examples of a single quantum dot, emphasizing the analysis of the
effective-mass limit for lattice models, and double-dot structures, where we
discuss the limit of the well used two-level approximation.Comment: 6 pages, 7 figure
A survey of Nellore breed based on nine molecular markers.
The Brazilian Nellore is a Bos indicus brees developed from animals imported from india up to the middle of this centry. Due to its high tolerance ti the tropical environment, the Nellore became the most popular beef cattle brees in Brazil. Besidies its importance as pure breed, it has been successfully used in commeercial crosses and in the composition of new breeds. Genetic variability providies the scenario for selection in animal breeding programs. Monitoring this variabilty through molecular marker analysis can be useful to prevent genetic erosion. The objective of this study was to charactize Nellore animals based on restriction fragment lenth polymorphisms (RFLP) and microsatellites.Resum
- …
