753 research outputs found
Decoherence and the Nature of System-Environment Correlations
We investigate system-environment correlations based on the exact dynamics of
a qubit and its environment in the framework of pure decoherence (phase
damping). We focus on the relation of decoherence and the build-up of
system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit
state. In the commonly employed regime where the qubit dynamics can be
described by a Markov master equation of Lindblad type, we find that for almost
all qubit initial states inside the Bloch sphere, decoherence is complete while
the total state is still separable - no entanglement is involved. In general,
both "separable" and "entangling" decoherence occurs, depending on temperature
and initial qubit state. Moreover, we find situations where classical and
quantum correlations periodically alternate as a function of time in the regime
of low temperatures
Quantum-classical transition and quantum activation of ratchet currents in the parameter space
The quantum ratchet current is studied in the parameter space of the
dissipative kicked rotor model coupled to a zero temperature quantum
environment. We show that vacuum fluctuations blur the generic isoperiodic
stable structures found in the classical case. Such structures tend to survive
when a measure of statistical dependence between the quantum and classical
currents are displayed in the parameter space. In addition, we show that
quantum fluctuations can be used to overcome transport barriers in the phase
space. Related quantum ratchet current activation regions are spotted in the
parameter space. Results are discussed {based on quantum, semiclassical and
classical calculations. While the semiclassical dynamics involves vacuum
fluctuations, the classical map is driven by thermal noise.Comment: 6 pages, 3 figure
System-environment correlations and Non-Markovian dynamics
We determine the total state dynamics of a dephasing open quantum system
using the standard environment of harmonic oscillators. Of particular interest
are random unitary approaches to the same reduced dynamics and
system-environment correlations in the full model. Concentrating on a model
with an at times negative dephasing rate, the issue of "non-Markovianity" will
also be addressed. Crucially, given the quantum environment, the appearance of
non-Markovian dynamics turns out to be accompanied by a loss of
system-environment correlations. Depending on the initial purity of the qubit
state, these system-environment correlations may be purely classical over the
whole relevant time scale, or there may be intervals of genuine
system-environment entanglement. In the latter case, we see no obvious relation
between the build-up or decay of these quantum correlations and
"Non-Markovianity"
Electron spin tomography through counting statistics: a quantum trajectory approach
We investigate the dynamics of electron spin qubits in quantum dots.
Measurement of the qubit state is realized by a charge current through the dot.
The dynamics is described in the framework of the quantum trajectory approach,
widely used in quantum optics, and we show that it can be applied successfully
to problems in condensed matter physics. The relevant master equation dynamics
is unravelled to simulate stochastic tunneling events of the current through
the dot.Quantum trajectories are then used to extract the counting statistics
of the current. We show how, in combination with an electron spin resonance
(ESR) field, counting statistics can be employed for quantum state tomography
of the qubit state. Further, it is shown how decoherence and relaxation time
scales can be estimated with the help of counting statistics, in the time
domain. Finally, we discuss a setup for single shot measurement of the qubit
state without the need for spin-polarized leads.Comment: 23 pages, 10 figures, RevTeX4, submitted to PR
Breakdown of a conservation law in incommensurate systems
We show that invariance properties of the Lagrangian of an incommensurate
system, as described by the Frenkel Kontorova model, imply the existence of a
generalized angular momentum which is an integral of motion if the system
remains floating. The behavior of this quantity can therefore monitor the
character of the system as floating (when it is conserved) or locked (when it
is not). We find that, during the dynamics, the non-linear couplings of our
model cause parametric phonon excitations which lead to the appearance of
Umklapp terms and to a sudden deviation of the generalized momentum from a
constant value, signalling a dynamical transition from a floating to a pinned
state. We point out that this transition is related but does not coincide with
the onset of sliding friction which can take place when the system is still
floating.Comment: 7 pages, 6 figures, typed with RevTex, submitted to Phys. Rev. E
Replaced 27-03-2001: changes to text, minor revision of figure
A Bose gas in a single-beam optical dipole trap
We study an ultracold Bose gas in an optical dipole trap consisting of one
single focused laser beam. An analytical expression for the corresponding
density of states beyond the usual harmonic approximation is obtained. We are
thus able to discuss the existence of a critical temperature for Bose-Einstein
condensation and find that the phase transition must be enabled by a cutoff
near the threshold. Moreover, we study the dynamics of evaporative cooling and
observe significant deviations from the findings for the well-established
harmonic approximation. Furthermore, we investigate Bose-Einstein condensates
in such a trap in Thomas-Fermi approximation and determine analytical
expressions for chemical potential, internal energy and Thomas-Fermi radii
beyond the usual harmonic approximation
Decoherence scenarios from micro- to macroscopic superpositions
Environment induced decoherence entails the absence of quantum interference
phenomena from the macroworld. The loss of coherence between superposed wave
packets depends on their separation. The precise temporal course depends on the
relative size of the time scales for decoherence and other processes taking
place in the open system and its environment. We use the exactly solvable model
of an harmonic oscillator coupled to a bath of oscillators to illustrate
various decoherence scenarios: These range from exponential golden-rule decay
for microscopic superpositions, system-specific decay for larger separations in
a crossover regime, and finally universal interaction-dominated decoherence for
ever more macroscopic superpositions.Comment: 11 pages, 7 figures, accompanying paper to quant-ph/020412
Decoherence and Entanglement Dynamics in Fluctuating Fields
We study pure phase damping of two qubits due to fluctuating fields. As
frequently employed, decoherence is thus described in terms of random unitary
(RU) dynamics, i.e., a convex mixture of unitary transformations. Based on a
separation of the dynamics into an average Hamiltonian and a noise channel, we
are able to analytically determine the evolution of both entanglement and
purity. This enables us to characterize the dynamics in a concurrence-purity
(CP) diagram: we find that RU phase damping dynamics sets constraints on
accessible regions in the CP plane. We show that initial state and dynamics
contribute to final entanglement independently.Comment: 10 pages, 5 figures, added minor changes in order to match published
versio
- …