35 research outputs found
Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi
Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland
1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct
Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest
We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests
Mycorrhizal infection indicates the suitability of different management treatments for nature conservation in calcareous grassland
Studies on the attractional effect of root exudates on hyphal growth of an arbuscular mycorrhizal fungus in a soil compartment-membrane system
The effects of tomato and bean rhizospheres on hyphal spreading of the arbuscular mycorrhizal (AM) fungus Glomus mosseae were studied using a soil compartment system in combination with hydrophobic polytetrafluorethylene (PTFE) membranes. Both the nylon screen and the PTFE membrane were freely permeable to hyphae but not to roots. Furthermore, the hydrophobic PTFE membrane seemed to be a barrier to the flux of soil solutions containing root exudates. The results show that water soluble exudates of tomato and bean roots greatly stimulate hyphal growth in the soil compartment system used. Moreover, water soluble root exudates of bean exert a clear attractional effect on AM hyphal growth
Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi
We studied the transport of "&N from a soil compartment separated from a plant root compartment by a hydrophobic polytetrafuoroethylene (PTFE) membrane to plants in the presence and absence of arbuscular mycorrhizal fungi (AMF). We have previously shown that this type of membrane efficiently inhibits mass fow and diffusion of mobile ions in the soil solution in an abiotic system, but can be penetrated by the hyphae of mycorrhizal fungi. Mycorrhizal tomatoes (Lycopersicon esculentum) colonized by Glomus mosseae were grown at two N fertilizer concentrations in a root compartment. A PTFE membrane was placed between the root compartment and an adjoining soil compartment that was inaccessible to the roots but accessible to the AMF hyphae (hyphal compartment). Additional N was applied to the hyphal compartment using uniformly 15N-labelled NH4NO3. There was a fux of 15N from the hyphal compartment to the plants even in the absence of mycorrhizal fungi. However, this fux was much higher in mycorrhizal plants, which had much higher N concentrations in their shoots and roots than did the non-mycorrhizal control plants. This was particularly apparent when the root compartment had a low N fertilizer concentration. Of the total N content of mycorrhizal plants, c. 42 and 24% at the low and high N fertilizer concentrations, respectively, were estimated to originate from the hyphal compartment by transport through AMF hyphae. In the presence of mycorrhizal fungi, the fux of 15N was about three times higher than in their absence. The results show that AMF can access a soil compartment separated by a PTFE membrane, and can contribute substantially to N uptake by plants
Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi
Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity
Segregation in a Mycorrhizal Fungus Alters Rice Growth and Symbiosis-Specific Gene Transcription
SummaryArbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants, improving plant nutrition and diversity [1, 2]. Evidence exists suggesting that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm [3, 4]. This potentially has two important consequences for their genetics. First, by random distribution of nuclei at spore formation, new offspring of an AMF could receive different complements of nucleotypes compared to the parent or siblings—we consider this as segregation. Second, genetic exchange between AMF would allow the mixing of nuclei, altering nucleotype diversity in new spores. Because segregation was assumed not to occur [5–7] and genetic exchange has only recently been demonstrated [8], no attempts have been made to test whether this affects the symbiosis with plants. Here, we show that segregation occurs in the AMF Glomus intraradices and can enhance the growth of rice up to five times, even though neither parental nor crossed AMF lines induced a positive growth response. This process also resulted in an alteration of symbiosis-specific gene transcription in rice. Our results demonstrate that manipulation of AMF genetics has important consequences for the symbiotic effects on plants and could be used to enhance the growth of globally important crops
