529 research outputs found

    A study of blow-ups in the Keller-Segel model of chemotaxis

    Full text link
    We study the Keller-Segel model of chemotaxis and develop a composite particle-grid numerical method with adaptive time stepping which allows us to accurately resolve singular solutions. The numerical findings (in two dimensions) are then compared with analytical predictions regarding formation and interaction of singularities obtained via analysis of the stochastic differential equations associated with the Keller-Segel model

    The Complexity of Graph-Based Reductions for Reachability in Markov Decision Processes

    Full text link
    We study the never-worse relation (NWR) for Markov decision processes with an infinite-horizon reachability objective. A state q is never worse than a state p if the maximal probability of reaching the target set of states from p is at most the same value from q, regard- less of the probabilities labelling the transitions. Extremal-probability states, end components, and essential states are all special cases of the equivalence relation induced by the NWR. Using the NWR, states in the same equivalence class can be collapsed. Then, actions leading to sub- optimal states can be removed. We show the natural decision problem associated to computing the NWR is coNP-complete. Finally, we ex- tend a previously known incomplete polynomial-time iterative algorithm to under-approximate the NWR

    Single cell analysis identifies <em>CRLF2</em> rearrangements as both early and late events in Down syndrome and non-Down syndrome acute lymphoblastic leukaemia

    Get PDF
    Deregulated expression of the type I cytokine receptor, CRLF2, is observed in 5-15% of precursor B-cell acute lymphoblastic leukaemia (B-ALL). We have previously reported the genomic landscape of patients with CRLF2 rearrangements (CRLF2-r) using both whole genome and exome sequencing, which identified a number of potential clonal and sub-clonal genomic alterations. In this study, we aimed to assess when the CRLF2-r; IGH-CRLF2 or P2RY8-CRLF2, arose during the evolution of both Down syndrome-ALL (DS-ALL) and non-DS-ALL. Using fluorescence in situ hybridisation, we were able to track up to four structural variants in single cells from 47 CRLF2-r B-ALL patients, which in association with our multiplex single cell analysis of a further four patients, permitted simultaneous tracking of copy number alterations, structural and single nucleotide variants within individual cells. We observed CRLF2-r arising as both early and late events in DS and non-DS-ALL patients. Parallel evolution of discrete clones was observed in the development of CRLF2-r B-ALL, either involving the CRLF2-r or one of the other tracked abnormalities. In depth single cell analysis identified both linear and branching evolution with early clones harbouring a multitude of abnormalities, including the CRLF2-r in DS-ALL patients

    The Influence of Specimen Thickness on the High Temperature Corrosion Behavior of CMSX-4 during Thermal-Cycling Exposure

    Get PDF
    CMSX-4 is a single-crystalline Ni-base superalloy designed to be used at very high temperatures and high mechanical loadings. Its excellent corrosion resistance is due to external alumina-scale formation, which however can become less protective under thermal-cycling conditions. The metallic substrate in combination with its superficial oxide scale has to be considered as a composite suffering high stresses. Factors like different coefficients of thermal expansion between oxide and substrate during temperature changes or growing stresses affect the integrity of the oxide scale. This must also be strongly influenced by the thickness of the oxide scale and the substrate as well as the ability to relief such stresses, e.g., by creep deformation. In order to quantify these effects, thin-walled specimens of different thickness (t = 100500 lm) were prepared. Discontinuous measurements of their mass changes were carried out under thermal-cycling conditions at a hot dwell temperature of 1100 C up to 300 thermal cycles. Thin-walled specimens revealed a much lower oxide-spallation rate compared to thick-walled specimens, while thinwalled specimens might show a premature depletion of scale-forming elements. In order to determine which of these competetive factor is more detrimental in terms of a component’s lifetime, the degradation by internal precipitation was studied using scanning electron microscopy (SEM) in combination with energy-dispersive X-ray spectroscopy (EDS). Additionally, a recently developed statistical spallation model was applied to experimental data [D. Poquillon and D. Monceau, Oxidation of Metals, 59, 409–431 (2003)]. The model describes the overall mass change by oxide scale spallation during thermal cycling exposure and is a useful simulation tool for oxide scale spallation processes accounting for variations in the specimen geometry. The evolution of the net-mass change vs. the number of thermal cycles seems to be strongly dependent on the sample thickness

    The anti-glucocorticoid receptor antibody clone 5E4: raising awareness of unspecific antibody binding

    Get PDF
    Unspecific antibody binding takes a significant toll on researchers in the form of both the economic burden and the disappointed hopes of promising new therapeutic targets. Despite recent initiatives promoting antibody validation, a uniform approach addressing this issue has not yet been developed. Here, we demonstrate that the anti-glucocorticoid receptor (GR) antibody clone 5E4 predominantly targets two different proteins of approximately the same size, namely AMP deaminase 2 (AMPD2) and transcription intermediary factor 1-beta (TRIM28). This paper is intended to generate awareness of unspecific binding of well-established reagents and advocate the use of more rigorous verification methods to improve antibody quality in the future

    Spatial Fingerprints of Community Structure in Human Interaction Network for an Extensive Set of Large-Scale Regions

    Get PDF
    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well- established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal- area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization
    • …
    corecore