16 research outputs found
The welfare of water buffaloes during the slaughter process: a review
This paper reviews the scientific literature on water buffalo welfare in all stages of the live animal supply chain from the farm gate to slaughter (loading/unloading, markets, transportation, handling, lairage, stunning and slaughter) with the objective of identifying risk factors and potential mitigation strategies. Although in some countries legislation exists to protect the welfare of farm animals during transport and killing, the handling practices used to load and unload buffaloes and move them in livestock markets and abattoirs are often harsh. This is frequently due to inadequate equipment designed principally for cattle, and the fact that water buffaloes are considered more temperamental than cattle. Additionally, more reactive animals have increased stress responses to handling, which can lead to more negative human interventions with increased numbers of skin lesions and bruises to the carcasses. During transport, buffaloes may suffer periods of thermal stress due to overstocking, inadequate ventilation and because in many tropical climates trips are made during the hottest time of the day. The anatomical and physiological characteristics of water buffalo make them particularly susceptible to thermal stress in the absence of water for wallowing. Although water buffaloes belong to the same Bovidae family as domestic cattle, certain anatomical features of the head make effective stunning very problematic. Buffaloes have extensive sinuses and frontal bones, meaning that the penetrating captive bolt devices recommended for cattle may prove ineffective in reliably inducing unconsciousness. There is a need for further development of procedures, stunning positions and appropriate devices to improve the efficiency of buffalo stunning. Finally, in many parts of the world where buffalo are routinely slaughtered in basic conditions without prior stunning. Slaughter without stunning can result in pain and stress associated with delays in the time to loss of consciousness, pain from the cutting of the neck and potential distress associated with aspiration of blood into the respiratory tract. Specific legislation, guidelines and handler/stockman/operator training programmes should be developed to improve the welfare of buffaloes during all ante mortem stages of loading, unloading, handling, stunning and slaughter
Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps
Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR)
Neurophysiological mechanisms of mother–young bonding in buffalo and other farm animals
In buffaloes and other mammalian farm species, the mother provides food and protection to the young, but she is also the main source of behavioral and social learning for the offspring. It is important that mother and young establish a bond based on a learning mechanism defined as “imprinting” early after parturition during the sensitive period, on which the welfare and survival of the offspring will depend. This review aims to summarize and discuss current knowledge regarding the imprinting process, the neurobiological pathways that are triggered during this sensitive period, and the development of the cow–calf bond. Touch, hearing, vision, and smell seem to be the predominant senses involved during imprinting in buffaloes and other mammalian farm species. In buffalo, bonding is very particular due to the expression of specific behaviors, such as allo-suckling and communal rearing. In general, imprinting and the subsequent bond may be affected by the lack of experience of the mothers or dystocic parturitions, which occur most frequently with male calves and in primiparous dams. The main problems in the development of this process include lack of seeking a protected and isolated place to give birth; moving from the birth-site after parturition; insufficient postpartum care; aversion or aggressiveness towards the newborn, or abandonment of the newborn. The process can develop differently according to the species. However, the correct development of the cow–calf relationship represents, regardless of the species, a key factor for their fitness
Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction
Even though the eyes constantly change position, the location of a stimulus can be accurately represented by a population of neurons with retinotopic receptive fields modulated by eye position gain fields. Recent electrophysiological studies, however, indicate that eye position gain fields may serve an additional function since they have a non-uniform spatial distribution that increases the neural response to stimuli in the straight-ahead direction. We used functional magnetic resonance imaging and a wide-field stimulus display to determine whether gaze modulations in early human visual cortex enhance the blood-oxygenation-level dependent (BOLD) response to stimuli that are straight-ahead. Subjects viewed rotating polar angle wedge stimuli centered straight-ahead or vertically displaced by ±20° eccentricity. Gaze position did not affect the topography of polar phase-angle maps, confirming that coding was retinotopic, but did affect the amplitude of the BOLD response, consistent with a gain field. In agreement with recent electrophysiological studies, BOLD responses in V1 and V2 to a wedge stimulus at a fixed retinal locus decreased when the wedge location in head-centered coordinates was farther from the straight-ahead direction. We conclude that stimulus-evoked BOLD signals are modulated by a systematic, non-uniform distribution of eye-position gain fields
Pain at the slaughterhouse in ruminants with a focus on the neurobiology of sensitisation
We pose, based on a neurobiological examination, that events that occur around the time of slaughter have the potential to intensify the pain response, through the processes of sensitisation and enhanced transmission. Sensitisation, or an enhanced response to painful stimuli, is a well-discussed phenomenon in the human medical literature, which can arise from previous injury to an area, inflammatory reactions, or previous overstimulation of the stress axes. A number of events that occur prior to arrival at, or in the slaughterhouse, may lead to presence of these factors. This includes previous on-farm pathology, injuries arising from transport and handling and lack of habituation to humans. Whilst there is limited evidence of a direct effect of these on the processes of sensitisation in animals at slaughter, by analogy with the human neurobiology literature the connection seems plausible. In this review a neurobiological approach is taken to discuss this hypothesis in the light of basic science, and extrapolations from existing literature on the slaughter of ruminants. To confirm the postulated link between events at slaughter, and processes of hypersensitisation, further dedicated study is required.Daniel Mota-Rojas, Fabio Napolitano, Ana Strappini, Agustín Orihuela, Marcelo Daniel Ghezzi, Ismael Hernández-Ávalos ... et al