39 research outputs found

    Macroscopic Quantum Tunneling of a Bose Condensate

    Full text link
    We study, by means of a variational method, the stability of a condensate in a magnetically trapped atomic Bose gas with a negative scattering length and find that the condensate is unstable in general. However, for temperatures sufficiently close to the critical temperature the condensate turns out to be metastable. For that case we determine in the usual WKB approximation the decay rate of the condensate due to macroscopic quantum fluctuations. When appropriate, we also calculate the decay rate due to thermal fluctuations. An important feature of our approach is that (nonsingular) phase fluctuations of the condensate are taken into account exactly.Comment: Invited paper for the Journal of Statistical Physic

    Lysozyme M deficiency leads to an increased susceptibility to Streptococcus pneumoniae-induced otitis media

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lysozyme is an antimicrobial innate immune molecule degrading peptidoglycan of the bacterial cell wall. Lysozyme shows the ubiquitous expression in wide varieties of species and tissues including the tubotympanum of mammals. We aim to investigate the effects of lysozyme depletion on pneumococcal clearance from the middle ear cavity.</p> <p>Methods</p> <p>Immunohistochemistry was performed to localize lysozyme in the Eustachian tube. Lysozyme expression was compared between the wild type and the lysozyme M<sup>-/- </sup>mice using real time quantitative RT-PCR and western blotting. Muramidase activity and bactericidal activity of lysozyme was measured using a lysoplate radial diffusion assay and a liquid broth assay, respectively. To determine if depletion of lysozyme M increases a susceptibility to pneumococal otitis media, 50 CFU of <it>S. pneumoniae </it>6B were transtympanically inoculated to the middle ear and viable bacteria were counted at day 3 and 7 with clinical grading of middle ear inflammation.</p> <p>Results</p> <p>Immunolabeling revealed that localization of lysozyme M and lysozyme P is specific to some/particular cell types of the Eustachian tube. Lysozyme P of lysozyme M<sup>-/- </sup>mice was mainly expressed in the submucosal gland but not in the tubal epithelium. Although lysozyme M<sup>-/- </sup>mice showed compensatory up-regulation of lysozyme P, lysozyme M depletion resulted in a decrease in both muramidase and antimicrobial activities. Deficiency in lysozyme M led to an increased susceptibility to middle ear infection with <it>S. pneumoniae </it>6B and resulted in severe middle ear inflammation, compared to wild type mice.</p> <p>Conclusion</p> <p>The results suggest that lysozyme M plays an important role in protecting the middle ear from invading pathogens, particularly in the early phase. We suggest a possibility of the exogenous lysozyme as an adjuvant therapeutic agent for otitis media, but further studies are necessary.</p

    Sh3pxd2b Mice Are a Model for Craniofacial Dysmorphology and Otitis Media

    Get PDF
    Craniofacial defects that occur through gene mutation during development increase vulnerability to eustachian tube dysfunction. These defects can lead to an increased incidence of otitis media. We examined the effects of a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) on the progression of otitis media and hearing impairment at various developmental stages. We found that all mice that had the Sh3pxd2bnee mutation went on to develop craniofacial dysmorphologies and subsequently otitis media, by as early as 11 days of age. We found noteworthy changes in cilia and goblet cells of the middle ear mucosa in Sh3pxd2bnee mutant mice using scanning electronic microscopy. By measuring craniofacial dimensions, we determined for the first time in an animal model that this mouse has altered eustachian tube morphology consistent with a more horizontal position of the eustachian tube. All mutants were found to have hearing impairment. Expression of TNF-α and TLR2, which correlates with inflammation in otitis media, was up-regulated in the ears of mutant mice when examined by immunohistochemistry and semi-quantitative RT-PCR. The mouse model with a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) mirrors craniofacial dysmorphology and otitis media in humans

    L-glutamine and L-glutamate in diets with different lactose levels for piglets weaned at 21 days of age

    Get PDF
    This study was developed to evaluate the effects of adding L-glutamine and L-glutamate in diets with no lactose or with 4.0 or 8.0% lactose inclusion for piglets weaned at 21 days old. One hundred and eight piglets with initial weight of 6.12±0.70 kg were allotted in a complete randomized block design, in a 3 × 2 factorial arrangement, with six treatments, six replicates, and three piglets per experimental unit. The experimental diets were supplied from 21 to 35 days. From 36 to 49 days, animals received the same diet with no lactose inclusion, but the animals in the treatments with L-glutamine + L-glutamate in the previous phase continued to receive diets containing these ingredients. There was no interaction between the level of lactose and the inclusion of L-glutamine + L-glutamate on the parameters evaluated. The levels of lactose did not affect the performance of piglets in either of the two periods. Adding L-glutamine and L-glutamate in the diet positively influenced the weight gain of pigs from 21 to 49 days of age and increased the villous height in the duodenum, jejunum and ileum. Inclusion of L-glutamine + L-glutamate in diets for piglets weaned at 21 days of age improves the performance and the intestinal mucosa morphology, regardless of lactose addition
    corecore