2,755 research outputs found
Synthesis and magnetic properties of CoPt–poly(methylmethacrylate) nanostructured composite material
We have prepared nanometer-sized CoPt particles dispersed in a poly~methyl methacrylate~PMMA!matrix, as a novel nanostructured magnetic plastic, through a soft chemical processing route. In this work, CoPt nanoparticles were successfully synthesized from a solution phase reduction system in the presence of capping ligands and stabilizing agents at high temperature. The CoPt nanoparticles were annealed at 400 °C for 3 h, and were subsequently re-dispersed inmethylmethacrylate~monomer! . The polymerization was induced by a UV source and the hardness of final product was adjusted by varying the amount of monomeric cross-link agent. Annealed bare CoPt nanoparticles as a ‘‘core’’ material and CoPt–PMMA composite material were characterized by using energy dispersive spectroscopy, transmission electron microscopy, and x-ray diffraction, indicating that we are able to prepare CoPt nanoparticles with 10 nm in diameter ~after annealing by employing this high temperature colloidal processing method. Magnetic investigation of this CoPt–PMMA material indicates an intrinsic coercivity of 300 Oe at 300 K and 1665 Oe at 5 K
Synthesis and magnetic properties of CoPt–poly(methylmethacrylate) nanostructured composite material
We have prepared nanometer-sized CoPt particles dispersed in a poly~methyl methacrylate~PMMA!matrix, as a novel nanostructured magnetic plastic, through a soft chemical processing route. In this work, CoPt nanoparticles were successfully synthesized from a solution phase reduction system in the presence of capping ligands and stabilizing agents at high temperature. The CoPt nanoparticles were annealed at 400 °C for 3 h, and were subsequently re-dispersed inmethylmethacrylate~monomer! . The polymerization was induced by a UV source and the hardness of final product was adjusted by varying the amount of monomeric cross-link agent. Annealed bare CoPt nanoparticles as a ‘‘core’’ material and CoPt–PMMA composite material were characterized by using energy dispersive spectroscopy, transmission electron microscopy, and x-ray diffraction, indicating that we are able to prepare CoPt nanoparticles with 10 nm in diameter ~after annealing by employing this high temperature colloidal processing method. Magnetic investigation of this CoPt–PMMA material indicates an intrinsic coercivity of 300 Oe at 300 K and 1665 Oe at 5 K
Multi-Gigabit Wireless Link Development
CSIRO ICT Centre is developing millimetre wave point-to-point links suitable for multi-gigabit wireless connectivity. Suitable spectrum for this purpose is allocated at the 60 GHz band and above. This paper reports a new point-to-point link that will be installed at Marsfield site to demonstrate multi-gigabit operation and performance of its key components. The link will operate at the 81-86 GHz band incorporating CSIRO designed millimetre wave MMICs and multi-gigabit modems
Self-assembly of FePt nanoparticles into nanorings
The application of nanoparticles as quantum dots in nanoelectronics demands their arrangement in ordered arrays. Shape controlled self-assembly is a challenge due to the difficulties of obtaining proper self-assembling parameters, such as solvent concentration, organic ligands, and nanoparticle size. In this article, hard magnetic FePt nanoparticles were synthesized using a combination approach of reduction and thermal decomposition. The nanoparticles are about 4.5 nm and appeared as truncated octahedral enclosed by the
{100} and {111}
crystal facets of fcc structure. The nanoparticles are of hexagonal close packing and orient randomly in the self-assembly nanoarrays. By diluting the solution for large-area self-assembly, monolayer, submonolayer, and multilayer nanorings of FePt nanoparticles were formed. The nanoring formation is determined by hydrodynamics, surface effects, and interaction between the FePt nanoparticles and substrates
Recasting Navier–Stokes equations
Classical Navier-Stokes equations fail to describe some flows in both the
compressible and incompressible configurations. In this article, we propose a
new methodology based on transforming the fluid mass velocity vector field to
obtain a new class of continuum models. We uncover a class of continuum models
which we call the re-casted Navier-Stokes. They naturally exhibit the physics
of previously proposed models by different authors to substitute the original
Navier-Stokes equations. The new models unlike the conventional Navier-Stokes
appear as more complete forms of mass diffusion type continuum flow equations.
They also form systematically a class of thermo-mechanically consistent
hydrodynamic equations via the original equations. The plane wave analysis is
performed to check their linear stability under small perturbations, which
confirms that all re-casted models are spatially and temporally stable like
their classical counterpart. We then use the Rayleigh-Brillouin scattering
experiments to demonstrate that the re-casted equations may be better suited
for explaining some of the experimental data where original Navier-Stokes fail
Strain-induced kinetics of intergrain defects as the mechanism of slow dynamics in the nonlinear resonant response of humid sandstone bars
A closed-form description is proposed to explain nonlinear and slow dynamics
effects exhibited by sandstone bars in longitudinal resonance experiments.
Along with the fast subsystem of longitudinal nonlinear displacements we
examine the strain-dependent slow subsystem of broken intergrain and
interlamina cohesive bonds. We show that even the simplest but
phenomenologically correct modelling of their mutual feedback elucidates the
main experimental findings typical for forced longitudinal oscillations of
sandstone bars, namely, (i) hysteretic behavior of a resonance curve on both
its up- and down-slopes, (ii) linear softening of resonant frequency with
increase of driving level, and (iii) gradual recovery (increase) of resonant
frequency at low dynamical strains after the sample was conditioned by high
strains. In order to reproduce the highly nonlinear elastic features of
sandstone grained structure a realistic non-perturbative form of strain
potential energy was adopted. In our theory slow dynamics associated with the
experimentally observed memory of peak strain history is attributed to
strain-induced kinetic changes in concentration of ruptured inter-grain and
inter-lamina cohesive bonds causing a net hysteretic effect on the elastic
Young's modulus. Finally, we explain how enhancement of hysteretic phenomena
originates from an increase in equilibrium concentration of ruptured cohesive
bonds that are due to water saturation.Comment: 5 pages, 3 figure
Stokes' Drift of linear Defects
A linear defect, viz. an elastic string, diffusing on a planar substrate
traversed by a travelling wave experiences a drag known as Stokes' drift. In
the limit of an infinitely long string, such a mechanism is shown to be
characterized by a sharp threshold that depends on the wave parameters, the
string damping constant and the substrate temperature. Moreover, the onset of
the Stokes' drift is signaled by an excess diffusion of the string center of
mass, while the dispersion of the drifting string around its center of mass may
grow anomalous.Comment: 14 pages, no figures, to be published in Phys.Rev.
CoFe2O4 nanostructures with high coercivity
Nanometer-sized ferrite magnetic materials are the subject of intense research interest due to their potential applications in high-density magnetic information storage. One of the most explored ferrite materials is the cobalt ferrite (CoFe2O4).. We have synthesized cobalt ferrite nanowires using cobalt ferrite nanoparticles in a porous anodic alumina template (AAT). The process of embedding ferrimagnetic particles into the pores was assisted by the magnetic field of a permanent magnet placed in vacuum directly under the substrate. Particles synthesized in the template were subsequently annealed at 600 °C for 2 h in Ar gas forming arrays of cobalt ferrite nanowires inside the AAT. The morphology of the ferrite before and after annealing was observed using a field-emission scanning electron microscope. The crystallographic structure of the nanowires was analyzed using x-ray diffraction and transmission electron microscopy. The magnetization was measured by a superconducting quantum interference device. The coercivity of the annealed ferrite in the form of nanowires is significantly larger than that of the separate ferrite nanoparticles in the pores. This effect is due to the clustering of nanoparticles when the organic solvent is removed by high-temperature annealing as well as an improvement in the crystallininty of the ferrite by reduction of defects. The Faraday spectra of the nanowires were measured before and after annealing. A significant peak was observed at 725 nm. The nanowire/AAT composite material had a Verdet constant of 0.1 min/ (Oe cm) at the peak. It is important to mention that not only the properties but also the form of the material—a regular array of pillars—may be important for microelectronic or information storage applications
Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.
BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice
- …