Self-assembly of FePt nanoparticles into nanorings

Abstract

The application of nanoparticles as quantum dots in nanoelectronics demands their arrangement in ordered arrays. Shape controlled self-assembly is a challenge due to the difficulties of obtaining proper self-assembling parameters, such as solvent concentration, organic ligands, and nanoparticle size. In this article, hard magnetic FePt nanoparticles were synthesized using a combination approach of reduction and thermal decomposition. The nanoparticles are about 4.5 nm and appeared as truncated octahedral enclosed by the {100} and {111} crystal facets of fcc structure. The nanoparticles are of hexagonal close packing and orient randomly in the self-assembly nanoarrays. By diluting the solution for large-area self-assembly, monolayer, submonolayer, and multilayer nanorings of FePt nanoparticles were formed. The nanoring formation is determined by hydrodynamics, surface effects, and interaction between the FePt nanoparticles and substrates

    Similar works