3,058 research outputs found

    Laser extensometer

    Get PDF
    A drift compensated and intensity averaged extensometer for measuring the diameter or other properties of a substantially cylindrical sample based upon the shadow of the sample is described. A beam of laser light is shaped to provide a beam with a uniform intensity along an axis normal to the sample. After passing the sample, the portion of the beam not striking said sample is divided by a beam splitter into a reference signal and a measurement signal. Both of these beams are then chopped by a light chopper to fall upon two photodiode detectors. The resulting ac currents are rectified and then divided into one another, with the final output being proportional to the size of the sample shadow

    An investigation into linearity with cumulative emissions of the climate and carbon cycle response in HadCM3LC

    Get PDF
    We investigate the extent to which global mean temperature, precipitation, and the carbon cycle are constrained by cumulative carbon emissions throughout four experiments with a fully coupled climate-carbon cycle model. The two paired experiments adopt contrasting, idealised approaches to climate change mitigation at different action points this century, with total emissions exceeding two trillion tonnes of carbon in the later pair. Their initially diverging cumulative emissions trajectories cross after several decades, before diverging again. We find that their global mean temperatures are, to first order, linear with cumulative emissions, though regional differences in temperature of up to 1.5K exist when cumulative emissions of each pair coincide. Interestingly, although the oceanic precipitation response scales with cumulative emissions, the global precipitation response does not, due to a decrease in precipitation over land above cumulative emissions of around one trillion tonnes of carbon (TtC). Most carbon fluxes and stores are less well constrained by cumulative emissions as they reach two trillion tonnes. The opposing mitigation approaches have different consequences for the Amazon rainforest, which affects the linearity with which the carbon cycle responds to cumulative emissions. Averaged over the two fixed-emissions experiments, the transient response to cumulative carbon emissions (TCRE) is 1.95 K TtC-1, at the upper end of the IPCC’s range of 0.8-2.5 K TtC-1

    Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle

    Full text link
    We reconsider the problem of the stability of the thermohaline circulation as described by a two-dimensional Boussinesq model with mixed boundary conditions. We determine how the stability properties of the system depend on the intensity of the hydrological cycle. We define a two-dimensional parameters' space descriptive of the hydrology of the system and determine, by considering suitable quasi-static perturbations, a bounded region where multiple equilibria of the system are realized. We then focus on how the response of the system to finite-amplitude surface freshwater forcings depends on their rate of increase. We show that it is possible to define a robust separation between slow and fast regimes of forcing. Such separation is obtained by singling out an estimate of the critical growth rate for the anomalous forcing, which can be related to the characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy

    Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    Get PDF
    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops

    Emulation of Condensed Fuel Flames Using a Burning Rate Emulator (BRE) in Microgravity

    Get PDF
    The Burning Rate Emulator (BRE) is a gaseous fuel burner developed to emulate the burning of condensed phase fuels. The current study details several tests at the NASA Glenn 5-s drop facility to test the BRE technique in microgravity conditions. The tests are conducted for two burner diameters, 25 mm and 50 mm respectively, with methane and ethylene as the fuels. The ambient pressure, oxygen content and fuel flow rate are additional parameters. The microgravity results exhibit a nominally hemispherical flame with decelerating growth and quasi-steady heat flux after about 5 seconds. The BRE burner was evaluated with a transient analysis to assess the extent of steady-state achieved. The burning rate and flame height recorded at the end of the drop are correlated using two steady-state purely diffusive models. A higher burning rate for the bigger burner as compared to theory indicates the significance of gas radiation. The effect of the ambient pressure and oxygen concentration on the heat of gasification are also examined

    Nuclear Breathing Mode in the Relativistic Mean Field Theory

    Full text link
    The breathing-mode giant monopole resonance is studied within the framework of the relativistic mean-field (RMF) theory. Using a broad range of parameter sets, an analysis of constrained incompressibility and excitation energy of isoscalar monopole states in finite nuclei is performed. It is shown that the non-linear scalar self-interaction and the resulting surface properties influence the breathing-mode considerably. It is observed that dynamical surface properties respond differently in the RMF theory than in the Skyrme approach. A comparison is made with the incompressibility derived from the semi-infinite nuclear matter and with constrained nonrelativistic Skyrme Hartree-Fock calculaions.Comment: Latex (12 pages) and 3 figures (available upon request) J. Phys. G (in press

    Hearing the voices of older adult patients: processes and findings to inform health services research

    Get PDF
    Background Clinical academic research and service improvement is planned using Patient and Public Involvement and Engagement (PPIE) but older PPIE participants are consulted less often due to the perception that they are vulnerable or hard to engage. Objectives To consult frail older adults about a recently adopted service, discharge to assess (D2A), and to prioritise services improvements and research topics associated with the design and delivery of discharge from hospital. To use successive PPIE processes to enable a permanent PPIE panel to be established. Participants Following guidance from an established hospital PPI panel 27 older adult participants were recruited. Participants from Black, Asian and Minority Ethnic (BAME) communities, affluent and non-affluent areas and varied social circumstances were included. Methods Focus groups and individual interviews were conducted in participants own homes or nearby social venues. Results Priorities for discharge included remaining independent despite often feeling lonely at home; to remain in hospital if needed; and for services to ensure effective communication with families. The main research priority identified was facilitating independence, whilst establishing a permanent PPIE panel involving older adults was viewed favourably. Conclusions Taking a structured approach to PPIE enabled varied older peoples’ voices to express their priorities and concerns into early discharge from hospital, as well as enabling the development of health services research into hospital discharge planning and management. Older people as participants identified research priorities after reflecting on their experiences. Listening and reflection enabled researchers to develop a new “Community PPIE Elders Panel” to create an enduring PPIE infrastructure for frail older housebound people to engage in research design, development and dissemination

    Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change

    Get PDF
    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. The IPCC was jointly established in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in particular to assess in a comprehensive, objective, and transparent manner all the relevant scientific, technical, and socioeconomic information to contribute in understanding the scientific basis of risk of human-induced climate change, the potential impacts, and the adaptation and mitigation options. Beginning in 1990, the IPCC has produced a series of Assessment Reports, Special Reports, Technical Papers, methodologies, and other key documents which have since become the standard references for policymakers and scientists.This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decisionmaking under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies

    A new approach to bulk viscosity in strange quark matter at high densities

    Full text link
    A new method is proposed to compute the bulk viscosity in strange quark matter at high densities. Using the method it is straightforward to prove that the bulk viscosity is positive definite, which is not so easy to accomplish in other approaches especially for multi-component fluids like strange quark matter with light up and down quarks and massive strange quarks.Comment: 7pages, talk given in SQM2008. Minor revisions, including clarification and updated reference
    • …
    corecore