1,969 research outputs found
Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM
A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC) due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties
The evolution of the global aerosol system in a transient climate simulation from 1860 to 2100
The evolution of the global aerosol system from 1860 to 2100 is investigated through a transient atmosphere-ocean General Circulation Model climate simulation with interactively coupled atmospheric aerosol and oceanic biogeochemistry modules. The microphysical aerosol module HAM incorporates the major global aerosol cycles with prognostic treatment of their composition, size distribution, and mixing state. Based on an SRES A1B emission scenario, the global mean sulfate burden is projected to peak in 2020 while black carbon and particulate organic matter show a lagged peak around 2070. From present day to future conditions the anthropogenic aerosol burden shifts generally from the northern high-latitudes to the developing low-latitude source regions with impacts on regional climate. Atmospheric residence- and aging-times show significant alterations under varying climatic and pollution conditions. Concurrently, the aerosol mixing state changes with an increasing aerosol mass fraction residing in the internally mixed accumulation mode. The associated increase in black carbon causes a more than threefold increase of its co-single scattering albedo from 1860 to 2100. Mid-visible aerosol optical depth increases from pre-industrial times, predominantly from the aerosol fine fraction, peaks at 0.26 around the sulfate peak in 2020 and maintains a high level thereafter, due to the continuing increase in carbonaceous aerosols. The global mean anthropogenic top of the atmosphere clear-sky short-wave direct aerosol radiative perturbation intensifies to −1.1 W m^−2 around 2020 and weakens after 2050 to −0.6 W m^−2, owing to an increase in atmospheric absorption. The demonstrated modifications in the aerosol residence- and aging-times, the microphysical state, and radiative properties challenge simplistic approaches to estimate the aerosol radiative effects from emission projections
Sources of uncertainties in modelling black carbon at the global scale
Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation. The schemes for the atmospheric processing of black carbon that have been tested with the model are (i) a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii) a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of magnitude. The sensitivity to wet scavenging has been tested by varying in-cloud and below-cloud removal. BC lifetime increases by 10% when large scale and convective scale precipitation removal efficiency are reduced by 30%, while the variation is very small when below-cloud scavenging is zero. Since the emission inventories are representative of elemental carbon-like substance, the model output should be compared to elemental carbon measurements and if known, the ratio of black carbon to elemental carbon mass should be taken into account when the model is compared with black carbon observation
Magnetic Phase Diagrams of Manganites-like Local-Moment Systems with Jahn-Teller distortions
We use an extended two-band Kondo lattice model (KLM) to investigate the
occurrence of different (anti-)ferromagnetic phases or phase separation
depending on several model parameters. With regard to CMR-materials like the
manganites we have added a Jahn-Teller term, direct antiferromagnetic coupling
and Coulomb interaction to the KLM. The electronic properties are
self-consistently calculated in an interpolating self-energy approach with no
restriction to classical spins and going beyond mean-field treatments. Further
on we do not have to limit the Hund's coupling to low or infinite values.
Zero-temperature phase diagrams are presented for large parameter intervals.
There are strong influences of the type of Coulomb interaction (intraband,
interband) and of the important parameters (Hund's coupling, direct
antiferromagnetic exchange, Jahn-Teller distortion), especially at intermediate
couplings.Comment: 11 pages, 9 figures. Accepted for publication in Phys. Rev.
Soil C Change Over 14 Years in Grasslands Sown Into a Highly Disturbed Soil
Perennial grasslands are thought to sequester C, so restoring them is touted as part of the solution for mitigating climate change. Moreover, there is growing interest among managed grassland stakeholders in selling C credits on nascent C markets. Former agricultural and municipal sites are often considered viable areas for conversion to grasslands, with types ranging from unmanaged prairies with diverse plant communities to monocultures in highly managed urban environments. We sowed five perennial plant communities into an area that had undergone massive soil disturbance five years previous during conversion from row crop agriculture to C3 turf. We found that soils lost an average of 461 g C m-2 over the initial 3-y period, irrespective of mowing, fertilizer addition, or plant community type, with a similar magnitude of soil C loss occurring in the adjacent undisturbed turf. However, by the fourth year of sampling, soil C had returned to pre-treatment levels for most treatments. When sampled 14 years after disturbance and sowing, many soils had gained SOC relative to 2004 (~300 g C m-2). Exceptions included control-prairie grasses, fertilized-Kentucky bluegrass, mowed-fine fescue and mowed-prairie forbs, which had gained enough SOC to return to 2004 levels, but not enough for SOC gain in 2018. Soil-disturbing renovation or restoration of non-irrigated grasslands in the upper Midwest results in a short-term, but highly significant loss of soil C, but after 14 years SOC can sometimes, but not always recover and exceed pre-establishment SOC
Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM
The double-moment cloud microphysics scheme from ECHAM4 has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass and number concentrations and the aerosol mixing state. This results in a much better agreement with observed vertical profiles of the black carbon and aerosol mass mixing ratios than with the previous version ECHAM4, where only the different aerosol mass mixing ratios were predicted. Also, the simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and –35°C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient.
The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to –1.8 W m^−2 in ECHAM5, when a relative humidity dependent cloud cover scheme and present-day aerosol emissions representative for the year 2000 are used. It is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed
- …