251 research outputs found
Notes and Comments: Evolving Consumer Safeguards — Increased Producer and Seller Responsibility in the Absence of Strict Liability
The author examines the roots of product liability controversy, including several early cases developing the law, and reviews recent cases suggesting some important modifications in this field. Emphasis is placed on changes in the duty to warn, res ipsa loquitur, and contract formation as exemplified in the cases of Moran v. Faberge, Inc. and Giant Food, Inc. v. Washington Coca-Cola Bottling Co
Notes and Comments: Evolving Consumer Safeguards — Increased Producer and Seller Responsibility in the Absence of Strict Liability
The author examines the roots of product liability controversy, including several early cases developing the law, and reviews recent cases suggesting some important modifications in this field. Emphasis is placed on changes in the duty to warn, res ipsa loquitur, and contract formation as exemplified in the cases of Moran v. Faberge, Inc. and Giant Food, Inc. v. Washington Coca-Cola Bottling Co
Advertising, Solicitation, And Indication Of Specialization: recent Proposed Rules And Supreme Court Mandate
The American Bar Association (ABA), on January 3, 1980, circulated
a proposed draft for the complete revision of the Model Rules of Professional
Conduct
Transcriptional Analysis of the Global Regulatory Networks Active in Pseudomonas syringae during Leaf Colonization
The plant pathogen Pseudomonas syringae pv. syringae B728a grows and survives on leaf surfaces and in the leaf apoplast of its host, bean (Phaseolus vulgaris). To understand the contribution of distinct regulators to B728a fitness and pathogenicity, we performed a transcriptome analysis of strain B728a and nine regulatory mutants recovered from the surfaces and interior of leaves and exposed to environmental stresses in culture. The quorum-sensing regulators AhlR and AefR influenced few genes in planta or in vitro. In contrast, GacS and a downstream regulator, SalA, formed a large regulatory network that included a branch that regulated diverse traits and was independent of plant-specific environmental signals and a plant signal-dependent branch that positively regulated secondary metabolite genes and negatively regulated the type III secretion system. SalA functioned as a central regulator of iron status based on its reciprocal regulation of pyoverdine and achromobactin genes and also sulfur uptake, suggesting a role in the iron-sulfur balance. RetS functioned almost exclusively to repress secondary metabolite genes when the cells were not on leaves. Among the sigma factors examined, AlgU influenced many more genes than RpoS, and most AlgU-regulated genes depended on RpoN. RpoN differentially impacted many AlgU- and GacS-activated genes in cells recovered from apoplastic versus epiphytic sites, suggesting differences in environmental signals or bacterial stress status in these two habitats. Collectively, our findings illustrate a central role for GacS, SalA, RpoN, and AlgU in global regulation in B728a in planta and a high level of plasticity in these regulators’ responses to distinct environmental signals
Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion
Recent research has suggested a possible link between sports-related concussions and neurodegen-erative processes, highlighting the importance of developing methods to accurately quantify head impact tolerance. The use of kinematic parameters of the head to predict brain injury has been sug-gested because they are indicative of the inertial response of the brain. The objective of this study is to characterize the rotational kinematics of the head associated with concussive impacts using a large head acceleration dataset collected from human subjects. The helmets of 335 football players were instrumented with accelerometer arrays that measured head acceleration following head impacts sustained during play, resulting in data for 300,977 subconcussive and 57 concussive head impacts. The average subconcussive impact had a rotational acceleration of 1230 rad/s2 and a rotational ve-locity of 5.5 rad/s, while the average concussive impact had a rotational acceleration of 5022 rad/s2 and a rotational velocity of 22.3 rad/s. An injury risk curve was developed and a nominal injury value of 6383 rad/s2 associated with 28.3 rad/s represents 50% risk of concussion. These data provide an increased understanding of the biomechanics associated with concussion, and they provide critical insight into injury mechanisms, human tolerance to mechanical stimuli, and injury prevention tech-niques
Can helmet design reduce the risk of concussion in football?
Of all sports, football accounts for the highest incidence of concussion in the US due to the large number of athletes participating and the nature of the sport. While there is general agreement that concussion incidence can be reduced through rule changes and teaching proper tackling technique, there remains debate as to whether helmet design may also reduce the incidence of concussion. A retrospective analysis was performed of head impact data collected from 1833 collegiate football players who were instrumented with helmet-mounted accelerometer arrays for games and practices. Data were collected between 2005 and 2010 from 8 collegiate football teams: Virginia Tech, University of North Carolina, University of Oklahoma, Dartmouth College, Brown University, University of Minnesota, Indiana University, and University of Illinois. Concussion rates were compared between players wearing Riddell VSR4 and Riddell Revolution helmets while controlling for the head impact exposure of each player. A total of 1,281,444 head impacts were recorded, from which 64 concussions were diagnosed. The relative risk of sustaining a concussion in a Revolution helmet compared with a VSR4 helmet was 46.1% (95% CI 28.1%–75.8%). When controlling for each player’s exposure to head impact, a significant difference was found between concussion rates for players in VSR4 and Revolution helmets (χ2 = 4.68, p = 0.0305). This study illustrates that differences in the ability to reduce concussion risk exist between helmet models in football. Although helmet design may never prevent all concussions from occurring in football, evidence illustrates that it can reduce the incidence of this injury
Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion
Recent research has suggested a possible link between sports-related concussions and neurodegen-erative processes, highlighting the importance of developing methods to accurately quantify head impact tolerance. The use of kinematic parameters of the head to predict brain injury has been sug-gested because they are indicative of the inertial response of the brain. The objective of this study is to characterize the rotational kinematics of the head associated with concussive impacts using a large head acceleration dataset collected from human subjects. The helmets of 335 football players were instrumented with accelerometer arrays that measured head acceleration following head impacts sustained during play, resulting in data for 300,977 subconcussive and 57 concussive head impacts. The average subconcussive impact had a rotational acceleration of 1230 rad/s2 and a rotational ve-locity of 5.5 rad/s, while the average concussive impact had a rotational acceleration of 5022 rad/s2 and a rotational velocity of 22.3 rad/s. An injury risk curve was developed and a nominal injury value of 6383 rad/s2 associated with 28.3 rad/s represents 50% risk of concussion. These data provide an increased understanding of the biomechanics associated with concussion, and they provide critical insight into injury mechanisms, human tolerance to mechanical stimuli, and injury prevention tech-niques
Test–retest, retest, and retest: Growth curve models of repeat testing with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT)
Computerized neuropsychological testing has become an important tool in the identification and management of sports-related concussions; however, the psychometric effect of repeat testing has not been studied extensively beyond test–retest statistics. The current study analyzed data from Division I collegiate athletes who completed Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) baseline assessments at four sequential time points that varied over the course of their athletic careers. Administrations were part of a larger National Institutes of Health (NIH) study. Growth curve modeling showed that the two memory composite scores increased significantly with successive administrations: Change in Verbal Memory was best represented with a quadratic model, while a linear model best fit Visual Memory. Visual Motor Speed and Reaction Time composites showed no significant linear or quadratic growth. The results demonstrate the effect of repeated test administrations for memory composite scores, while speed composites were not significantly impacted by repeat testing. Acceptable test–retest reliability was demonstrated for all four composites as well
Implicit Essentialism: Genetic Concepts Are Implicitly Associated with Fate Concepts
Genetic essentialism is the tendency for people to think in more essentialist ways upon encountering genetic concepts. The current studies assessed whether genetic essentialist biases would also be evident at the automatic level. In two studies, using different versions of the Implicit Association Test [1], we found that participants were faster to categorize when genes and fate were linked, compared to when these two concepts were kept separate and opposing. In addition to the wealth of past findings of genetic essentialism with explicit and deliberative measures, these biases appear to be also evident with implicit measure
- …